Cannabinoid derivatives exert a potent anti-myeloma activity both in vitro and in vivo.

Image result for Int J Cancer.

“Although hematopoietic and immune system show high levels of the cannabinoid receptor CB2, the potential effect of cannabinoids on hematologic malignancies has been poorly determined.

Here we have investigated their anti-tumor effect in multiple myeloma (MM).

We demonstrate that cannabinoids induce a selective apoptosis in MM cell lines and in primary plasma cells of MM patients, while sparing normal cells from healthy donors, including hematopoietic stem cells.

Remarkably, blockage of the CB2 receptor also inhibited cannabinoid-induced apoptosis.

Cannabinoid derivative WIN-55 enhanced the anti-myeloma activity of dexamethasone and melphalan overcoming resistance to melphalan in vitro. Finally, administration of cannabinoid WIN-55 to plasmacytoma-bearing mice significantly suppressed tumor growth in vivo.

Together, our data suggest that cannabinoids may be considered as potential therapeutic agents in the treatment of MM.”

https://www.ncbi.nlm.nih.gov/pubmed/27778331

http://www.thctotalhealthcare.com/category/multiple-myeloma/

Preclinical and Clinical Assessment of Cannabinoids as Anti-Cancer Agents.

Image result for Front Pharmacol.

“Cancer is the second leading cause of death in the United States with 1.7 million new cases estimated to be diagnosed in 2016. This disease remains a formidable clinical challenge and represents a substantial financial burden to the US health care system. Therefore, research and development of novel therapeutics for the treatment of cancer is of high priority.

Cannabinoids and their derivatives have been utilized for their medicinal and therapeutic properties throughout history.

Cannabinoid activity is regulated by the endocannabinoid system (ECS), which is comprised of cannabinoid receptors, transporters, and enzymes involved in cannabinoid synthesis and breakdown.

More recently, cannabinoids have gained special attention for their role in cancer cell proliferation and death. However, many studies investigated these effects using in vitro models which may not adequately mimic tumor growth and metastasis.

As such, this article aims to review study results which evaluated effects of cannabinoids from plant, synthetic and endogenous origins on cancer development in preclinical animal models and to examine the current standing of cannabinoids that are being tested in human cancer patients.” https://www.ncbi.nlm.nih.gov/pubmed/27774065

“The studies reviewed herein indicate that cannabinoids elicit activity through cannabinoid receptor dependent and independent pathways. The evidence generated in these human studies are still informative and, when taken together with the strong in vivo animal data demonstrating anti-tumor effects of cannabinoids, offer promise for a clinical role for cannabinoids in the eradication of tumors. Hence, these investigations shed light on the role of cannabinoids on tumor growth in vivo and may ultimately pave the way for the development of novel cannabinoid therapeutics for cancer treatment.”  http://journal.frontiersin.org/article/10.3389/fphar.2016.00361/full

Crystal Structure of the Human Cannabinoid Receptor CB1.

Image result for cell journal

“Cannabinoid receptor 1 (CB1) is the principal target of Δ9-tetrahydrocannabinol (THC), a psychoactive chemical from Cannabis sativa with a wide range of therapeutic applications and a long history of recreational use.

CB1 is activated by endocannabinoids and is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders.

Here, we present the 2.8 Å crystal structure of human CB1 in complex with AM6538, a stabilizing antagonist, synthesized and characterized for this structural study.

The structure of the CB1-AM6538 complex reveals key features of the receptor and critical interactions for antagonist binding.

In combination with functional studies and molecular modeling, the structure provides insight into the binding mode of naturally occurring CB1 ligands, such as THC, and synthetic cannabinoids.

This enhances our understanding of the molecular basis for the physiological functions of CB1 and provides new opportunities for the design of next-generation CB1-targeting pharmaceuticals.”

https://www.ncbi.nlm.nih.gov/pubmed/27768894

Therapeutic potential of fatty acid amide hydrolase, monoacylglycerol lipase, and N-acylethanolamine acid amidase inhibitors.

Image result for J Med Chem

“Fatty acid ethanolamides (FAEs) and endocannabinoids (ECs) have been shown to alleviate pain and inflammation, regulate motility and appetite, and produce anti-cancer, anxiolytic, and neuroprotective efficacies via cannabinoid receptor type 1 (CB1) or type 2 (CB2), or via peroxisome proliferator-activated receptor α (PPAR-α) stimulation.

FAEs and ECs are synthesized by a series of endogenous enzymes, including N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD), diacylglycerol lipase (DAGL), or phospholipase C (PLC), and their metabolism is mediated by several metabolic enzymes, including fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), N-acylethanolamine acid amidase (NAAA), or cyclooxygenase-2 (COX-2).

Over the last decades, increasing the concentration of FAEs and ECs through the inhibition of degrading enzymes has been considered to be a viable therapeutic approach to enhance their anti-nociceptive and anti-inflammatory effects, as well as protecting the nervous system.”

Overexpression of cannabinoid receptor 1 promotes renal cell carcinoma progression.

Image result for Tumour Biol.

“Renal cell carcinoma (RCC) is a common urologic tumor with a poor prognosis.

Cannabinoid receptor 1 (CB1), which is a G protein-coupled receptor, has recently been reported to participate in the genesis and development of various cancers.

However, the exact role of CB1 in RCC is unknown. The aim of this study was to determine the role of CB1 in RCC cell lines and RCC prognosis, thus underlying its potential as a therapeutic target.

CB1 expression is functionally associated to cellular proliferation, apoptosis, and invasion ability of RCC.

Our data suggest that CB1 might be a potential target for RCC clinical therapy.”

https://www.ncbi.nlm.nih.gov/pubmed/27757850

Mild Traumatic Brain Injury Produces Neuron Loss That Can Be Rescued by Modulating Microglial Activation Using a CB2 Receptor Inverse Agonist.

Image result for Front Neurosci.

“We have previously reported that mild TBI created by focal left-side cranial blast in mice produces widespread axonal injury, microglial activation, and a variety of functional deficits.

We have also shown that these functional deficits are reduced by targeting microglia through their cannabinoid type-2 (CB2) receptors using 2-week daily administration of the CB2 inverse agonist SMM-189.

Overall, our findings indicate that SMM-189 rescues damaged neurons and thereby alleviates functional deficits resulting from TBI, apparently by selectively modulating microglia to the beneficial M2 state.

CB2 inverse agonists thus represent a promising therapeutic approach for mitigating neuroinflammation and neurodegeneration.”

Chronic stress leads to epigenetic dysregulation of neuropeptide-Y and cannabinoid CB1 receptor in the mouse cingulate cortex.

Image result for Neuropharmacology

“Persistent stress triggers a variety of mechanisms, which may ultimately lead to the occurrence of anxiety- and depression-related disorders.

Epigenetic modifications represent a mechanism by which chronic stress mediates long-term effects. Here, we analyzed brain tissue from mice exposed to chronic unpredictable stress (CUS), which induced impaired emotional and nociceptive behaviors.

As endocannabinoid (eCB) and neuropeptide-Y (Npy) systems modulate emotional processes, we hypothesized that CUS may affect these systems through epigenetic mechanisms.

We found reduced Npy expression and Npy type 1 receptor (Npy1r) signaling, and decreased expression of the cannabinoid type 1 receptor (CB1) in the cingulate cortex of CUS mice specifically in low CB1-expressing neurons.

Our findings suggest that epigenetic alterations in the Npy and CB1 genes represent one of the potential mechanisms contributing to the emotional imbalance induced by CUS in mice, and that the Npy and eCB systems may represent therapeutic targets for the treatment of psychopathologies associated with or triggered by chronic stress states.”

https://www.ncbi.nlm.nih.gov/pubmed/27737789

Pharmacokinetic-pharmacodynamic influence of N-palmitoylethanolamine, arachidonyl-2′-chloroethylamide and WIN 55,212-2 on the anticonvulsant activity of antiepileptic drugs against audiogenic seizures in DBA/2 mice.

Image result for Eur J Pharmacol.

“We evaluated the effects of ACEA (selective cannabinoid (CB)1 receptor agonist), WIN 55,212-2 mesylate (WIN; non-selective CB1and CB2 receptor agonist) and N-palmitoylethanolamine (PEA; an endogenous fatty acid of ethanolamide) in DBA/2 mice, a genetic model of reflex audiogenic epilepsy.

PEA, ACEA or WIN intraperitoneal (i.p.) administration decreased the severity of tonic-clonic seizures.

PEA has anticonvulsant features in DBA/2 mice mainly through PPAR-α and likely indirectly on CB1 receptors, whereas ACEA and WIN act through CB1 receptors.

In conclusion, PEA, ACEA and WIN show anticonvulsant effects in DBA/2 mice and potentiate the effects several AEDs suggesting a possible therapeutic relevance of these drugs and their mechanisms of action.”

https://www.ncbi.nlm.nih.gov/pubmed/27663280

Hemopressin peptides as modulators of the endocannabinoid system and their potential applications as therapeutic tools.

Image result for Protein and Peptide Letters

“The endocannabinoid system is activated by the binding of natural arachidonic acid derivatives (endogenous cannabinoids or endocannabinoids) as lipophilic messengers to cannabinoid receptors CB1 and CB2.

The endocannabinoid system comprises also many hydrolytic enzymes responsible for the endocannabinoids cleavage, such as FAAH and MAGL. These two enzymes are possible therapeutic targets for the development of new drugs as indirect cannabinoid agonists.

Recently a new family of endocannabinoid modulators was discovered; the lead of this family is the nonapeptide hemopressin produced from enzymatic cleavage of the α-chain of hemoglobin and acting as negative allosteric modulator of CB1. Hemopressin shows several physiological effects, e.g. antinociception, hypophagy, and hypotension.  It is still matter of debate whether this peptide, isolated from the brain of rats is a real neuromodulator of the endocannabinoid system.

Recent evidence indicates that hemopressin could be a by-product formed by chemical degradation of a longer peptide RVD-hemopressin during the extraction from the brain homolysate. Indeed, RVD-hemopressin is more active than hemopressin in certain biological tests and may bind to the same subsite as Rimonabant, which is an inverse agonist for the CB1 receptor and a μ-opioid receptor antagonist.

These findings have stimulated several studies to verify this hypothesis and to evaluate possible therapeutic applications of hemopressin, its peptidic derivatives and synthetic analogues, opening new perspectives to the development of novel cannabinoid drugs.”

https://www.ncbi.nlm.nih.gov/pubmed/27748182

Central Aspects of Nausea and Vomiting in GI Disorders.

Image result for Curr Treat Options Gastroenterol.

“Nausea and vomiting result from continuous interactions among gastrointestinal, central nervous system, and autonomic nervous system. Despite being closely associated, central pathways of nausea and vomiting appear to be at least partly different and nausea is no longer considered only a penultimate step of vomiting. Although our understanding of central pathways of nausea has improved over the last one decade, it is still very basic.

Afferent pathways from gastrointestinal tract via vagus, vestibular system, and chemoreceptor trigger zone project to nucleus tractus solitarius which, in turn, relays the signal to central pattern generator initiating multiple downstream pathways. This central nausea pathway appears to be under constant modulation by autonomic nervous system and cerebral cortex.

There is also some evidence that central pathway of chronic nausea is different from that of acute nausea and closely resembles that of neuropathic pain. This improved understanding has modified the way we can approach the treatment of acute and chronic nausea.

While conventional therapies such as antiemetics (antiserotoninergic, antihistaminic, antidopaminergic) and prokinetics are commonly used to manage acute nausea, they are not as effective in improving chronic nausea.

Recently, neuromodulators such as tricyclic antidepressants, gabapentin, olanzapine, benzodiazepines, and cannabinoids have been shown to have antinausea effect.

There is a need to study the utility of these drugs in managing chronic functional nausea. Improving our understanding of central and peripheral circuitry of nausea will allow us to better utilize the currently available drugs and develop new therapeutic options.”

https://www.ncbi.nlm.nih.gov/pubmed/27734216