Control of Breast Cancer by the Endocannabinoid System

G

“Activation of the endocannabinoid system through CB1, CB2 and additional receptor subtypes results in the inhibition of a broad range of cancers.

The endocannabinoid system was discovered through research focusing on the classical cannabinoid agonist, ?9-tetrahydrocannabinol (?9-THC), and other synthetic cannabinoids.

This proposal will focus on the potential treatment of human breast cancer using cannabinoids as selective antitumor agents.

We have found that cannabinoid compounds activating CB1, CB2 and additional receptor subtypes can inhibit breast cancer cell proliferation and invasiveness and we have discovered down-stream targets that potentially link cannabinoid receptor stimulation to these effects.

Furthermore, our preliminary studies provide evidence that endogenous endocannabinoid tone tonically inhibits metastatic breast cancer cell proliferation and invasiveness through the activation of cannabinoid receptors.

Our preliminary data also suggests that cannabinoid compounds possess selective efficacy, having less adverse effects on the normal human cells from which the breast cancers arise.

Since toxicity in healthy tissue limits the efficacy of current cancer treatments, discovering the mechanism behind selective efficacy in human tissues is of clinical importance.

Cannabinoids can inhibit multiple types of tumor growth in vivo…

Testing the hypotheses outlined in the application may lead to the development of effective inhibitors of breast, and perhaps other, cancers.

This research may also elucidate novel mechanisms related to the anticancer activity of cannabinoids, and will serve to develop the career of the candidate in the field of cancer biology.”

 http://grantome.com/grant/NIH/K01-CA111723-01A2

http://www.thctotalhealthcare.com/category/breast-cancer/

Targeting the endocannabinoid system to treat anxiety-related disorders.

“The endocannabinoid system plays an important role in the control of emotions, and its dysregulation has been implicated in several psychiatric disorders.

The most common self-reported reason for using cannabis is rooted in its ability to reduce feelings of stress, tension, and anxiety.

Nevertheless, there are only few studies in controlled clinical settings that confirm that administration of cannabinoids can benefit patients with a post-traumatic stress disorder (PTSD).

There are considerable encouraging preclinical data to suggest that endocannabinoid-targeted therapeutics for anxiety disorders should continue.

In this review, we will describe data supporting a role for the endocannabinoid system in preventing and treating anxiety-like behavior in animal models and PTSD patients.

Cannabinoids have shown beneficial outcomes in rat and mouse models of anxiety and PTSD, but they also may have untoward effects that discourage their chronic usage, including anxiogenic effects.

Hence, clinical and preclinical research on the endocannabinoid system should further study the effects of cannabinoids on anxiety and help determine whether the benefits of using exogenous cannabinoids outweigh the risks.

In general, this review suggests that targeting the endocannabinoid system represents an attractive and novel approach to the treatment of anxiety-related disorders and, in particular, PTSD.”

http://www.ncbi.nlm.nih.gov/pubmed/26426887

The Endocannabinoid System: Pivotal Orchestrator of Obesity and Metabolic Disease.

Related image

“The endocannabinoid system (ECS) functions to adjust behavior and metabolism according to environmental changes in food availability.

Its actions range from the regulation of sensory responses to the development of preference for the consumption of calorically-rich food and control of its metabolic handling.

ECS activity is beneficial when access to food is scarce or unpredictable.

However, when food is plentiful, the ECS favors obesity and metabolic disease.

We review recent advances in understanding the roles of the ECS in energy balance, and discuss newly identified mechanisms of action that, after the withdrawal of first generation cannabinoid type 1 (CB1) receptor antagonists for the treatment of obesity, have made the ECS once again an attractive target for therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/26412154

https://www.cell.com/trends/endocrinology-metabolism/fulltext/S1043-2760(15)00140-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS104327601500140X%3Fshowall%3Dtrue

Medical Cannabis Effective for Chronic Pain, Other Indications

According to this study:

* Moderate-quality evidence supports the use of cannabinoids for the treatment of chronic pain and for the spasticity related to multiple sclerosis.

* Low-quality evidence suggests that cannabinoids may be effective for chemotherapy-induced nausea and vomiting and other indications.”

http://journals.lww.com/ajnonline/Abstract/2015/10000/Medical_Cannabis_Effective_for_Chronic_Pain,_Other.31.aspx

https://www.researchgate.net/publication/282153137_Medical_Cannabis_Effective_for_Chronic_Pain_Other_Indications

“Medical Cannabis Effective for Chronic Pain, Other Indications. According to this study.” http://www.ncbi.nlm.nih.gov/pubmed/26402288

“Cannabinoids for Medical Use: A Systematic Review and Meta-analysis”  http://jama.jamanetwork.com/article.aspx?articleid=2338251

Cannabis and Endocannabinoid Signaling in Epilepsy.

“The antiepileptic potential of Cannabis sativa preparations has been historically recognized.

Recent changes in legal restrictions and new well-documented cases reporting remarkably strong beneficial effects have triggered an upsurge in exploiting medical marijuana in patients with refractory epilepsy.

Parallel research efforts in the last decade have uncovered the fundamental role of the endogenous cannabinoid system in controlling neuronal network excitability raising hopes for cannabinoid-based therapeutic approaches.

However, emerging data show that patient responsiveness varies substantially, and that cannabis administration may sometimes even exacerbate seizures. Qualitative and quantitative chemical variability in cannabis products and personal differences in the etiology of seizures, or in the pathological reorganization of epileptic networks, can all contribute to divergent patient responses.

Thus, the consensus view in the neurologist community is that drugs modifying the activity of the endocannabinoid system should first be tested in clinical trials to establish efficacy, safety, dosing, and proper indication in specific forms of epilepsies.

To support translation from anecdote-based practice to evidence-based therapy, the present review first introduces current preclinical and clinical efforts for cannabinoid- or endocannabinoid-based epilepsy treatments.

Next, recent advances in our knowledge of how endocannabinoid signaling limits abnormal network activity as a central component of the synaptic circuit-breaker system will be reviewed to provide a framework for the underlying neurobiological mechanisms of the beneficial and adverse effects.

Finally, accumulating evidence demonstrating robust synapse-specific pathophysiological plasticity of endocannabinoid signaling in epileptic networks will be summarized to gain better understanding of how and when pharmacological interventions may have therapeutic relevance.”

http://www.ncbi.nlm.nih.gov/pubmed/26408165

http://www.thctotalhealthcare.com/category/epilepsy-2/

Endocannabinoids and Mental Disorders.

“Preclinical and clinical data fully support the involvement of the endocannabinoid system in the etiopathogenesis of several mental diseases.

In this review we will briefly summarize the most common alterations in the endocannabinoid system, in terms of cannabinoid receptors and endocannabinoid levels, present in mood disorders (anxiety, posttraumatic stress disorder, depression, bipolar disorder, and suicidality) as well as psychosis (schizophrenia) and autism.

The arising picture for each pathology is not always straightforward; however, both animal and human studies seem to suggest that pharmacological modulation of this system might represent a novel approach for treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/26408164

Endocannabinoids and Neurodegenerative Disorders: Parkinson’s Disease, Huntington’s Chorea, Alzheimer’s Disease, and Others.

“This review focuses on the role of the endocannabinoid signaling system in controlling neuronal survival, an extremely important issue to be considered when developing new therapies for neurodegenerative disorders.

First, we will describe the cellular and molecular mechanisms, and the signaling pathways, underlying these neuroprotective properties, including the control of glutamate homeostasis, calcium influx, the toxicity of reactive oxygen species, glial activation and other inflammatory events; and the induction of autophagy.

We will then concentrate on the preclinical studies and the few clinical trials that have been carried out targeting endocannabinoid signaling in three important chronic progressive neurodegenerative disorders (Parkinson’s disease, Huntington’s chorea, and Alzheimer’s disease), as well as in other less well-studied disorders.

We will end by offering some ideas and proposals for future research that should be carried out to optimize endocannabinoid-based treatments for these disorders.

Such studies will strengthen the possibility that these therapies will be investigated in the clinical scenario and licensed for their use in specific disorders.”

Cannabinoid receptor activation in the basolateral amygdala blocks the effects of stress on the conditioning and extinction of inhibitory avoidance.

“The endocannabinoid system has recently emerged as important in the regulation of extinction learning and in the regulation of the hypothalamic-pituitary-adrenal axis.

Here, we aimed to examine the involvement of the cannabinoid CB(1) receptor in the basolateral amygdala (BLA) in inhibitory avoidance (IA) conditioning and extinction and to test whether cannabinoid activation would reverse the effects of stress on these memory processes.

Together, our findings may support a wide therapeutic application for cannabinoids in the treatment of conditions associated with the inappropriate retention of aversive memories and stress-related disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/19741114

Cannabinoids prevent the development of behavioral and endocrine alterations in a rat model of intense stress.

“Cannabinoids have recently emerged as a possible treatment of stress- and anxiety-related disorders such as post-traumatic stress disorder (PTSD).

Here, we examined whether cannabinoid receptor activation could prevent the effects of traumatic stress on the development of behavioral and neuroendocrine measures in a rat model of PTSD…

…cannabinoids could serve as a pharmacological treatment of stress- and trauma-related disorders.

…the results extend previous findings to another stress model and to a post-trauma treatment configuration that are more relevant to clinical context and add to the growing body of data pointing to a therapeutic potential of cannabinoids for treatment of PTSD.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3242307/

http://www.thctotalhealthcare.com/category/post-traumatic-stress-disorder-ptsd/

Cannabinoid receptor activation prevents the effects of chronic mild stress on emotional learning and LTP in a rat model of depression.

“The endocannabinoid (eCB) system has recently emerged as a promising therapeutic target for the treatment of stress-related emotional disorders.

Recent data suggest that the eCB system could represent a new therapeutic target for the treatment of depression.

The findings suggest that enhancing cannabinoid signaling could represent a novel approach to the treatment of cognitive deficits that accompany stress-related depression.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3924526/

http://www.thctotalhealthcare.com/category/depression-2/