Early Phase in the Development of Cannabidiol as a Treatment for Addiction: Opioid Relapse Takes Initial Center Stage.

“Multiple cannabinoids derived from the marijuana plant have potential therapeutic benefits but most have not been well investigated, despite the widespread legalization of medical marijuana in the USA and other countries.

Therapeutic indications will depend on determinations as to which of the multiple cannabinoids, and other biologically active chemicals that are present in the marijuana plant, can be developed to treat specific symptoms and/or diseases.

Such insights are particularly critical for addiction disorders, where different phytocannabinoids appear to induce opposing actions that can confound the development of treatment interventions. Whereas Δ9-tetracannabinol has been well documented to be rewarding and to enhance sensitivity to other drugs, cannabidiol (CBD), in contrast, appears to have low reinforcing properties with limited abuse potential and to inhibit drug-seeking behavior.

Other considerations such as CBD’s anxiolytic properties and minimal adverse side effects also support its potential viability as a treatment option for a variety of symptoms associated with drug addiction.

However, significant research is still needed as CBD investigations published to date primarily relate to its effects on opioid drugs, and CBD’s efficacy at different phases of the abuse cycle for different classes of addictive substances remain largely understudied.

Our paper provides an overview of preclinical animal and human clinical investigations, and presents preliminary clinical data that collectively sets a strong foundation in support of the further exploration of CBD as a therapeutic intervention against opioid relapse.

As the legal landscape for medical marijuana unfolds, it is important to distinguish it from “medical CBD” and other specific cannabinoids, that can more appropriately be used to maximize the medicinal potential of the marijuana plant.”

http://www.ncbi.nlm.nih.gov/pubmed/26269227

Cannabinoids in Neurodegenerative Disorders and Stroke/Brain Trauma: From Preclinical Models to Clinical Applications.

“Cannabinoids form a singular family of plant-derived compounds (phytocannabinoids), endogenous signaling lipids (endocannabinoids), and synthetic derivatives with multiple biological effects and therapeutic applications in the central and peripheral nervous systems.

One of these properties is the regulation of neuronal homeostasis and survival, which is the result of the combination of a myriad of effects addressed to preserve, rescue, repair, and/or replace neurons, and also glial cells against multiple insults that may potentially damage these cells.

These effects are facilitated by the location of specific targets for the action of these compounds (e.g., cannabinoid type 1 and 2 receptors, endocannabinoid inactivating enzymes, and nonendocannabinoid targets) in key cellular substrates (e.g., neurons, glial cells, and neural progenitor cells).

This potential is promising for acute and chronic neurodegenerative pathological conditions. In this review, we will collect all experimental evidence, mainly obtained at the preclinical level, supporting that different cannabinoid compounds may be neuroprotective in adult and neonatal ischemia, brain trauma, Alzheimer’s disease, Parkinson’s disease, Huntington’s chorea, and amyotrophic lateral sclerosis.

This increasing experimental evidence demands a prompt clinical validation of cannabinoid-based medicines for the treatment of all these disorders, which, at present, lack efficacious treatments for delaying/arresting disease progression…”

http://www.ncbi.nlm.nih.gov/pubmed/26260390

Life Threatening Idiopathic Recurrent Angioedema Responding to Cannabis.

“We present a case of a 27-year-old man with recurrent episodes of angioedema since he was 19, who responded well to treatment with medical grade cannabis.

Initially, he responded to steroids and antihistamines, but several attempts to withdraw treatment resulted in recurrence. In the last few months before prescribing cannabis, the frequency and severity of the attacks worsened and included several presyncope events, associated with scrotal and neck swelling. No predisposing factors were identified, and extensive workup was negative.

The patient reported that he was periodically using cannabis socially and that during these periods he was free of attacks.

Recent data suggest that cannabis derivatives are involved in the control of mast cell activation. Consequently, we decided to try a course of inhaled cannabis as modulators of immune cell functions.

The use of inhaled cannabis resulted in a complete response, and he has been free of symptoms for 2 years.

An attempt to withhold the inhaled cannabis led to a recurrent attack within a week, and resuming cannabis maintained the remission, suggesting a cause and effect relationship.”

http://www.ncbi.nlm.nih.gov/pubmed/26257969

“Angioedema is swelling (edema) under the skin. It can happen in different parts of your body, and it’s usually caused by an allergic reation. When you have hereditary angioedema (HAE), a rare genetic condition causes the swelling, not allergies. You are born with this condition and will always have it. Treatment can help you live with it, though. Over the years, there have been big improvements in therapies, and researchers are still looking for more and better treatment options.” http://www.webmd.com/skin-problems-and-treatments/hereditary-angioedema

On the effects of CP 55-940 and other cannabinoid receptor agonists in C6 and U373 cell lines.

“Cannabinoid receptor (CBs) agonists affect the growth of tumor cells via activation of deadly cascades. The spectrum of action of these agents and the precise role of the endocannabinoid system (ECS) on oncogenic processes remain elusive.

Herein we compared the effects of synthetic (CP 55-940 and WIN 55,212-2) and endogenous (anandamide or AEA) CBs agonists (10-20 μM) on morphological changes, cell viability, and induction of apoptosis in primary astrocytes and in two glioblastoma cell lines (C6 and U373 cells) in order to characterize their possible differential actions on brain tumor cells.

None of the CBs agonist tested induced changes in cell viability or morphology in primary astrocytes.

In contrast, CP 55-940 significantly decreased cell viability in C6 and U373 cells at 5 days of treatment, whereas AEA and WIN 55,212-2 moderately decreased cell viability in both cell lines. Treatment of U373 and C6 for 3 and 5 days with AEA or WIN 55,212-2 produced discrete morphological changes in cell bodies, whereas the exposure to CP 55-940 induced soma degradation. CP 55-940 also induced apoptosis in both C6 and U373 cell lines.

Our results support a more effective action of CP 55-940 to produce cell death of both cell lines through apoptotic mechanisms. Comparative aspects between cannabinoids with different profiles are necessary for the design of potential treatments against glial tumors.”

http://www.ncbi.nlm.nih.gov/pubmed/26255146

The Use of Styrene Maleic Acid Nanomicelles Encapsulating the Synthetic Cannabinoid Analog WIN55,212-2 for the Treatment of Cancer.

“Synthetic cannabinoid WIN55,212-2 (WIN) has shown a promise as an anticancer agent but causes psychoactive side-effects.

In the present study, nano-micelles of styrene maleic acid (SMA)-conjugated WIN were synthesized to reduce side-effects and increase drug efficacy…

SMA-WIN demonstrated characteristics theorized to improve in vivo drug biodistribution.

Potent cytotoxicity was found against breast and prostate cancer cells in vitro, showing promise as a novel treatment against breast and prostate cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/26254360

Cannabinoids Regulate Intestinal Motor Function and Electrophysiological Activity of Myocytes in Rodents.

“This study aims to investigate the effects of cannabinoid (CB)-1 and CB2 receptor ligands on intestinal motor function and muscular electrophysiological activity in rodent gastrointestinal (GI) tract…

This is one of the first reports on neuronal regulation of intestinal motility through CB-dependent pathways with potential application in the treatment of inflammatory and functional GI disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26254701

The role of the peripheral cannabinoid system in the pathogenesis of detrusor overactivity evoked by increased intravesical osmolarity in rats.

“The cannabinoid receptors CB1 and CB2 are localized in the urinary bladder and play a role in the regulation of its function. We investigated the pathomechanisms through which hyperosmolarity induces detrusor overactivity (DO)…

These results demonstrate that hyperosmolar-induced DO is mediated by CB1 and CB2 receptors. Therefore, the cannabinoid pathway could potentially be a target for the treatment of urinary bladder dysfunction.”

http://www.ncbi.nlm.nih.gov/pubmed/26243021

Cannabinoids: is there a potential treatment role in epilepsy?

“Cannabinoids have been used medicinally for centuries, and in the last decade, attention has focused on their broad therapeutic potential particularly in seizure management.

While some cannabinoids have demonstrated anticonvulsant activity in experimental studies, their efficacy for managing clinical seizures has not been fully established.

This commentary will touch on our understanding of the brain endocannabinoid system’s regulation of synaptic transmission in both physiological and pathophysiological conditions, and review the findings from both experimental and clinical studies on the effectiveness of cannabinoids to suppress epileptic seizures.

At present, there is preliminary evidence that non-psychoactive cannabinoids may be useful as anticonvulsants, but additional clinical trials are needed to fully evaluate the efficacy and safety of these compounds for the treatment of epilepsy.”

http://www.ncbi.nlm.nih.gov/pubmed/26234319

Novel Triazolopyrimidine-Derived Cannabinoid Receptor 2 Agonists As Potential Treatment for Inflammatory Kidney Diseases.

“The cannabinoid receptor 2 (CB2) system is described to modulate various pathological conditions, including inflammation and fibrosis.

A series of new heterocyclic small-molecule CB2 receptor agonists were identified from a high-throughput screen…

A significant depletion of the three measured kidney markers indicated a protective role of CB2 receptor activation toward inflammatory kidney damage. Compound 39 was also protective in a model of renal fibrosis.

Oral treatment with 39 at 3 mg kg-1 per day significantly decreased the amount of fibrosis by ∼40 % which was induced by unilateral ureter obstruction.”

http://www.ncbi.nlm.nih.gov/pubmed/26228928

The GPR55 antagonist CID16020046 protects against intestinal inflammation.

“G protein-coupled receptor 55 (GPR55) is a lysophospholipid receptor responsive to certain cannabinoids.

The role of GPR55 in inflammatory processes of the gut is largely unknown. Using the recently characterized GPR55 inhibitor CID16020046, we determined the role of GPR55 in experimental intestinal inflammation and explored possible mechanisms of action…

Pharmacological blockade of GPR55 reduces experimental intestinal inflammation by reducing leukocyte migration and activation, in particular that of macrophages. Therefore, CID16020046 represents a possible drug for the treatment of bowel inflammation.”

http://www.ncbi.nlm.nih.gov/pubmed/26227635