Monthly Archives: September 2018
Oral cannabinoid-rich THC/CBD cannabis extract for secondary prevention of chemotherapy-induced nausea and vomiting: a study protocol for a pilot and definitive randomised double-blind placebo-controlled trial (CannabisCINV).
“Chemotherapy-induced nausea and vomiting (CINV) remains an important issue for patients receiving chemotherapy despite guideline-consistent antiemetic therapy. Trials using delta-9-tetrahydrocannabinol-rich (THC) products demonstrate limited antiemetic effect, significant adverse events and flawed study design. Trials using cannabidiol-rich (CBD) products demonstrate improved efficacy and psychological adverse event profile. No definitive trials have been conducted to support the use of cannabinoids for this indication, nor has the potential economic impact of incorporating such regimens into the Australian healthcare system been established. CannabisCINV aims to assess the efficacy, safety and cost-effectiveness of adding TN-TC11M, an oral THC/CBD extract to guideline-consistent antiemetics in the secondary prevention of CINV.
METHODS AND ANALYSIS:
The current multicentre, 1:1 randomised cross-over, placebo-controlled pilot study will recruit 80 adult patients with any malignancy, experiencing CINV during moderate to highly emetogenic chemotherapy despite guideline-consistent antiemetics. Patients receive oral TN-TC11M (THC 2.5mg/CBD 2.5 mg) capsules or placebo capsules three times a day on day -1 to day 5 of cycle A of chemotherapy, followed by the alternative drug regimen during cycle B of chemotherapy and the preferred drug regimen during cycle C. The primary endpoint is the proportion of subjects attaining a complete response to CINV. Secondary and tertiary endpoints include regimen tolerability, impact on quality of life and health system resource use. The primary assessment tool is patient diaries, which are filled from day -1 to day 5. A subsequent randomised placebo-controlled parallel phase III trial will recruit a further 250 patients.ETHICS AND DISSEMINATION:
The protocol was approved by ethics review committees for all participating sites. Results will be disseminated in peer-reviewed journals and at scientific conferences.” https://www.ncbi.nlm.nih.gov/pubmed/30209152 https://bmjopen.bmj.com/content/8/9/e020745]]>Cannabinoid 1 Receptor Signaling on Hippocampal GABAergic Neurons Influences Microglial Activity.
“Post-traumatic headache is the most common symptom of postconcussion syndrome and becomes a chronic neurological disorder in a substantial proportion of patients.
This review provides a brief overview of the epidemiology of postconcussion headache, research models used to study this disorder, as well as the proposed mechanisms.
An objective of this review is to enhance the understanding of how the endogenous cannabinoid system is essential for maintaining the balance of the CNS and regulating inflammation after injury, and in turn making the endocannabinoid system a potential modulator of the trigeminal response to concussion.
The review describes the role of endocannabinoid modulation of pain and the potential for use of phytocannabinoids to treat pain, migraine and concussion.”
“We recently reported that a CB2R agonist, GW405833 (GW), reduced both the ACh-induced Ca2+ oscillations and the L-arginine-induced Ca2+ signal enhancement in mouse pancreatic acinar cells, suggesting that GW-induced inhibition may prevent the pathogenesis of acute pancreatitis.
In this study, we aim to evaluate the effects of other cannabinoid ligands on Ca2+ signaling in acinar cells.
In conclusion, CB2R agonists play critical roles in modulating Ca2+ signals in mouse pancreatic acinar cells, while other cannabinoid ligands modulate Ca2+ oscillations in a heterogeneous manner through a CB receptor or non-CB-receptor mechanism.”
“Obesity is an increasing health problem worldwide. Its related comorbidities imply a high cost for the National Health System and diminish a patient’s life quality.
Adipose tissue is composed of three types of cells. White adipocytes are involved in fat storage and secretion of hormones. Brown adipocytes are involved in thermogenesis and caloric expenditure. Beige adipocytes are transitional adipocytes that in response to various stimuli can turn from white to brown and could be protective against the obesity, enhancing energy expenditure.
The conversion of white in beige adipose tissue is a potential new therapeutic target for obesity.
Cannabinoid receptors (CB) regulate thermogenesis, food intake and inflammation. CB1 ablation or inhibition helps reducing body weight and food intake. Stimulation of CB2 limits inflammation and promotes anti-obesity effects by reducing food intake and weight gain. Its genetic ablation results in adiposity development.
CB receptors are also responsible for transforming white adipose tissue towards beige or brown adipocytes, therefore their modulation can be considered potential anti-obesity target. CB1 principal localization in central nervous system represents an important limit. Stimulation of CB2, principally localized on peripheral cells instead, should facilitate the anti-obesity effects without exerting remarkable psychotropic activity.”
“Pain is characterized as a complex experience, dependent not only on the regulation of nociceptive sensory systems but also on the activation of mechanisms that control emotional processes in limbic brain areas.
Non-opioid, non-steroidal anti-inflammatory drugs (NSAIDs) are the most widely used analgesics in the treatment of not-severe pain. We have recently shown that repeated doses result in tolerance to these drugs like opioids.
Here we investigated the central brain mechanisms of non-opioid induced antinociception in the non-acute pain models of rats, such as the ‘formalin test’ and a relation between administration of NSAIDs in the limbic brain area, – the anterior cingulated cortex (ACC), – and the endocannabinoid system.
The present data support the notion that endocannabinoids’ CB1 receptor contributes in part to antinociceptive effects of NSAIDs and probably involved in activation of the descending opioid modulatory system of pain.”