ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27086601

Suppression of invasion and metastasis in aggressive salivary cancer cells through targeted inhibition of ID1 gene expression.

Image result for Cancer Lett.

“Salivary gland cancer (SGC) represents the most common malignancy in the head and neck region, and often metastasizes to the lungs. The helix-loop-helix ID1 protein has been shown to control metastatic progression in many types of cancers.

Using two different approaches to target the expression of ID1 (genetic knockdown and progesterone receptor introduction combined with progesterone treatment), we previously determined that the aggressiveness of salivary gland tumor ACCM cells in culture was suppressed. Here, using the same approaches to target ID1 expression, we investigated the ability of ACCM cells to generate lung metastatic foci in nude mice.

Moreover, since both approaches would be challenging for applications in humans, we added a third approach, i.e., treatment of mice with a non-toxic cannabinoid compound known to down-regulate ID1 gene expression.

All approaches aimed at targeting the pro-metastatic ID1 gene led to a significant reduction in the formation of lung metastatic foci.

Therefore, targeting a key transcriptional regulator using different means results in the same reduction of the metastatic spread of SGC cells in animal models, suggesting a novel approach for the treatment of patients with aggressive SGC.”

http://www.ncbi.nlm.nih.gov/pubmed/27087608

“Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells… CBD represents the first nontoxic exogenous agent that can significantly decrease Id-1 expression in metastatic breast cancer cells…  Moreover, reducing Id-1 expression with cannabinoids could also provide a therapeutic strategy for the treatment of additional aggressive cancers because Id-1 expression was found to be up-regulated during the progression of almost all types…”  http://mct.aacrjournals.org/content/6/11/2921.long

http://www.thctotalhealthcare.com/tag/id-1/

Antitumorigenic targets of cannabinoids – current status and implications.

“Molecular structures of the endocannabinoid system have gained interest as potential pharmacotherapeutical targets for systemic cancer treatment.

The present review covers the contribution of the endocannabinoid system to cancer progression. Particular focus will be set on the accumulating preclinical data concerning antimetastatic, anti-invasive and anti-angiogenic mechanisms induced by cannabinoids.

Expert opinion: The main goal of targeting endocannabinoid structures for systemic anticancer treatment is the comparatively good safety profile of cannabinoid compounds.

In addition, antitumorigenic mechanisms of cannabinoids are not restricted to a single molecular cascade but involve multiple effects on various levels of cancer progression such as angiogenesis and metastasis. Particularly the latter effect has gained interest for pharmacological interventions.

Thus, drugs aiming at the endocannabinoid system may represent potential “antimetastatics” for an upgrade of a future armamentarium against cancer diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27070944

http://www.thctotalhealthcare.com/category/cancer/

Cannabis and cancer: toward a new understanding

Logo of curroncol

“The treatment of cancer, including the disease itself and the symptoms associated with cancer and its therapy, is one of the most important emerging frontiers in cannabinoid therapeutics.

This Current Oncology supplement brings together the work of some of the leading minds around the world who have dedicated themselves and their laboratories to understanding the role of cannabis and cannabinoids in the pathophysiology and management of cancer.

It is an unfortunate reality of 2016 that many doctors still lack the basic knowledge about cannabis, cannabinoids, and the endocannabinoid system that would enable them to have an informed discussion with their patients, and that the knowledge gap gives rise to stigmatization, alienation, and a fracture of the doctor–patient relationship.

Our patient describes her experience in trying to find answers and assistance, and with the help of her treating oncologist, she succeeds in securing legal access to cannabinoids, with remarkable results. Stories of this kind are occurring too often to be ignored or written off as placebo responses or outliers. As a medical profession, we are duty-bound to follow up on such experiences with critical and balanced investigation.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791146/

Anticancer mechanisms of cannabinoids.

“In addition to the well-known palliative effects of cannabinoids on some cancer-associated symptoms, a large body of evidence shows that these molecules can decrease tumour growth in animal models of cancer.

They do so by modulating key cell signalling pathways involved in the control of cancer cell proliferation and survival. In addition, cannabinoids inhibit angiogenesis and decrease metastasis in various tumour types in laboratory animals.

In this review, we discuss the current understanding of cannabinoids as antitumour agents, focusing on recent discoveries about their molecular mechanisms of action, including resistance mechanisms and opportunities for their use in combination therapy.

Those observations have already contributed to the foundation for the development of the first clinical studies that will analyze the safety and potential clinical benefit of cannabinoids as anticancer agents.”

http://www.ncbi.nlm.nih.gov/pubmed/27022311

https://www.mdpi.com/1718-7729/23/11/3080

Integrating cannabis into clinical cancer care.

“Cannabis species have been used as medicine for thousands of years; only since the 1940s has the plant not been widely available for medical use.

However, an increasing number of jurisdictions are making it possible for patients to obtain the botanical for medicinal use.

For the cancer patient, cannabis has a number of potential benefits, especially in the management of symptoms. Cannabis is useful in combatting anorexia, chemotherapy-induced nausea and vomiting, pain, insomnia, and depression.

Cannabis might be less potent than other available antiemetics, but for some patients, it is the only agent that works, and it is the only antiemetic that also increases appetite.

Inhaled cannabis is more effective than placebo in ameliorating peripheral neuropathy in a number of conditions, and it could prove useful in chemotherapy-induced neuropathy.

A pharmacokinetic interaction study of vaporized cannabis in patients with chronic pain on stable doses of sustained-release opioids demonstrated no clinically significant change in plasma opiates, while suggesting the possibility of synergistic analgesia.

Aside from symptom management, an increasing body of in vitro and animal-model studies supports a possible direct anticancer effect of cannabinoids by way of a number of different mechanisms involving apoptosis, angiogenesis, and inhibition of metastasis.

Despite an absence of clinical trials, abundant anecdotal reports that describe patients having remarkable responses to cannabis as an anticancer agent, especially when taken as a high-potency orally ingested concentrate, are circulating.

Human studies should be conducted to address critical questions related to the foregoing effects.”

http://www.ncbi.nlm.nih.gov/pubmed/27022315

Use of cannabinoids in cancer care: palliative care

Page Header

“Cannabinoid Integrative Medicine In Oncologic Palliative Care.

The opportunities to improve and expand palliative care are many. In this supplement, Current Oncology is presenting a discussion on cannabinoid therapeutics. I believe that, as a therapeutic class, cannabinoids have an important role to play in oncologic palliative care—a role that I predict will only grow with time, as knowledge and acceptance of these agents becomes mainstream once more, as in the 19th and early 20th century in North America and Europe.”

http://www.current-oncology.com/index.php/oncology/article/view/2962/2087

In vitro and in vivo efficacy of non-psychoactive cannabidiol in neuroblastoma.

“Neuroblastoma (nbl) is one of the most common solid cancers in children. Prognosis in advanced nbl is still poor despite aggressive multimodality therapy. Furthermore, survivors experience severe long-term multi-organ sequelae. Hence, the identification of new therapeutic strategies is of utmost importance.

Cannabinoids and their derivatives have been used for years in folk medicine and later in the field of palliative care. Recently, they were found to show pharmacologic activity in cancer, including cytostatic, apoptotic, and antiangiogenic effects.

We investigated, in vitro and in vivo, the anti-nbl effect of the most active compounds in Cannabis, Δ(9)-tetrahydrocannabinol (thc) and cannabidiol (cbd)…

Both compounds have antitumourigenic activity in vitro and impeded the growth of tumour xenografts in vivo. Of the two cannabinoids tested, cbd was the more active. Treatment with cbd reduced the viability and invasiveness of treated tumour cells in vitro and induced apoptosis. Moreover, cbd elicited an increase in activated caspase 3 in treated cells and tumour xenografts.

 

Our results demonstrate the antitumourigenic action of cbd on nbl cells. Because cbd is a nonpsychoactive cannabinoid that appears to be devoid of side effects, our results support its exploitation as an effective anticancer drug in the management of nbl.”

http://www.ncbi.nlm.nih.gov/pubmed/27022310

“Neuroblastomas are cancers that start in early nerve cells (called neuroblasts) of the sympathetic nervous system, so they can be found anywhere along this system.”  http://www.cancer.org/cancer/neuroblastoma/detailedguide/neuroblastoma-what-is-neuroblastoma

Techniques and technologies for the bioanalysis of Sativex®, metabolites and related compounds.

“Sativex® is an oromucosal spray indicated for the treatment of moderate-to-severe spasticity in multiple sclerosis and is also an effective analgesic for advanced cancer patients.

Sativex contains Δ9-tetrahydrocannabinol (THC) and cannabidiol in an approximately 1:1 ratio.

The increasing prevalence of medicinal cannabis products highlights the importance of reliable bioanalysis and re-evaluation of the interpretation of positive test results for THC, as legal implications may arise in workplace, roadside and sports drug testing situations. This article summarizes published research on the bioanalysis of THC and cannabidiol, with particular focus on Sativex.”

http://www.ncbi.nlm.nih.gov/pubmed/27005853

Medical marijuana use in head and neck squamous cell carcinoma patients treated with radiotherapy.

Supportive Care in Cancer

“The purpose of the study was to better understand why patients with history of head and neck cancer (HNC) treated with radiotherapy are using medical marijuana (MM).

RESULTS:

There was a 100 % response rate. Median time from treatment was 45 months (21-136 months). Most patients smoked marijuana (12 patients), while others reported ingestion (4 patients), vaporizing (3 patients), and use of homemade concentrated oil (1 patient). Six patients reported prior recreational marijuana use before diagnosis. MM provided benefit in altered sense, weight maintenance, depression, pain, appetite, dysphagia, xerostomia, muscle spasm, and sticky saliva.

CONCLUSIONS:

HNC patients report MM use to help with long-term side effects of radiotherapy.”

http://www.ncbi.nlm.nih.gov/pubmed/27005465

https://link.springer.com/article/10.1007%2Fs00520-016-3180-8