Joints for joints: cannabinoids in the treatment of rheumatoid arthritis.

Image result for ovid journal

“An increasing number of patients with rheumatoid arthritis (RA) are using cannabis to treat their symptoms, although systematic studies regarding efficacy in RA are lacking. Within this review we will give an overview on the overall effects of cannabinoids in inflammation and why they might be useful in the treatment of RA.

RECENT FINDINGS:

Peripherally, cannabinoids show anti-inflammatory effects by activating cannabinoid type 2 receptors (CB2) which decrease cytokine production and immune cell mobilization. In contrast, cannabinoid type 1 receptor (CB1) activation on immune cells is proinflammatory while CB1 antagonism provides anti-inflammatory effects by increasing β2-adrenergic signaling in the joint and secondary lymphoid organs. In addition, the nonpsychotropic cannabinoid, cannabidiol (CBD) demonstrated antiarthritic effects independent of cannabinoid receptors. In addition to controlling inflammation, cannabinoids reduce pain by activating central and peripheral CB1, peripheral CB2 receptors and CBD-sensitive noncannabinoid receptor targets.

SUMMARY:

Cannabinoids might be a suitable treatment for RA, but it is important to target the right receptors in the right place. For clinical studies, we propose a combination of a CB2 agonist to decrease cytokine production, a peripheral CB1 antagonist to prevent detrimental CB1 signaling and to support anti-inflammatory effects of CB2 via activation of β2-adrenergic receptors and CBD to induce cannabinoid-receptor-independent anti-inflammatory effects.”

Safety, efficacy, and mechanisms of action of cannabinoids in neurological disorders.

The Lancet Neurology

“In the past two decades, there has been an increasing interest in the therapeutic potential of cannabinoids for neurological disorders such as epilepsy, multiple sclerosis, pain, and neurodegenerative diseases. Cannabis-based treatments for pain and spasticity in patients with multiple sclerosis have been approved in some countries. Randomised controlled trials of plant-derived cannabidiol for treatment of Lennox-Gastaut syndrome and Dravet syndrome, two severe childhood-onset epilepsies, provide evidence of anti-seizure effects. Despite positive results in these two severe epilepsy syndromes, further studies are needed to determine if the anti-seizure effects of cannabidiol extend to other forms of epilepsy, to overcome pharmacokinetic challenges with oral cannabinoids, and to uncover the exact mechanisms by which cannabidiol or other exogenous and endogenous cannabinoids exert their therapeutic effects.”

https://www.ncbi.nlm.nih.gov/pubmed/30910443

https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(19)30032-8/fulltext

Cannabinoid CB2R receptors are upregulated with corneal injury and regulate the course of corneal wound healing.

Experimental Eye Research

“CB2R receptors have demonstrated beneficial effects in wound healing in several models. We therefore investigated a potential role of CB2R receptors in corneal wound healing. We examined the functional contribution of CB2R receptors to the course of wound closure in an in vivo murine model. We additionally examined corneal expression of CB2R receptors in mouse and the consequences of their activation on cellular signaling, migration and proliferation in cultured bovine corneal epithelial cells (CECs). Using a novel mouse model, we provide evidence that corneal injury increases CB2R receptor expression in cornea. The CB2R agonist JWH133 induces chemorepulsion in cultured bovine CECs but does not alter CEC proliferation. The signaling profile of CB2R activation is activating MAPK and increasing cAMP accumulation, the latter perhaps due to Gs-coupling. Lipidomic analysis in bovine cornea shows a rise in acylethanolamines including the endocannabinoid anandamide 1 h after injury. In vivo, CB2R deletion and pharmacological block result in a delayed course of wound closure. In summary, we find evidence that CB2R receptor promoter activity is increased by corneal injury and that these receptors are required for the normal course of wound closure, possibly via chemorepulsion.”

https://www.ncbi.nlm.nih.gov/pubmed/30905716

https://www.sciencedirect.com/science/article/pii/S0014483518307206?via%3Dihub

Bronchodilator effect of delta1-tetrahydrocannabinol.

Logo of brjclinpharm

“1 delta1-trans-tetrahydrocannabinol, (delta1-THC) produces bronchodilatation in asthmatic patients. 2 Administered in 62 microliter metered volumes containing 50–200 microgram by inhalation from an aerosol device to patients judged to be in a steady state, it increased peak expiratory flow rate (PEFR) and forced expiratory volume in 1 second (FEV1). 3 The rate of onset, magnitude, and duration of the bronchodilator effect was dose related.”

https://www.ncbi.nlm.nih.gov/pubmed/656294

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1429361/

“Bronchodilator effect of delta1-tetrahydrocannabinol administered by aerosol of asthmatic patients. The mode of action of THC differs from that of sympathomimetic drugs, and it or a derivative may make a suitable adjuvant in the treatment of selected asthmatics.” https://www.ncbi.nlm.nih.gov/pubmed/797044

“Bronchodilators are medications that open (dilate) the airways (bronchial tubes) of the lung by relaxing bronchial muscles and allow people who have difficulty breathing to breath better. Bronchodilators are used for treating:

https://www.medicinenet.com/bronchodilators_for_asthma/article.htm

GPR55 – a putative “type 3” cannabinoid receptor in inflammation.

“G protein-coupled receptor 55 (GPR55) shares numerous cannabinoid ligands with CB1 and CB2 receptors despite low homology with those classical cannabinoid receptors. The pharmacology of GPR55 is not yet fully elucidated; however, GPR55 utilizes a different signaling system and downstream cascade associated with the receptor. Therefore, GPR55 has emerged as a putative “type 3″ cannabinoid receptor, establishing a novel class of cannabinoid receptor. Furthermore, the recent evidence of GPR55-CB1 and GPR55-CB2 heteromerization along with its broad distribution from central nervous system to peripheries suggests the importance of GPR55 in various cellular processes and pathologies and as a potential therapeutic target in inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/26669245

https://www.degruyter.com/view/j/jbcpp.2016.27.issue-3/jbcpp-2015-0080/jbcpp-2015-0080.xml

The Effect of Medical Marijuana Laws on the Health and Labor Supply of Older Adults: Evidence from the Health and Retirement Study

 Journal of Policy Analysis and Management banner

“Older adults are at elevated risk of reducing labor supply due to poor health, partly because of high rates of symptoms that may be alleviated by medical marijuana. Yet, surprisingly little is known about how this group responds to medical marijuana laws (MMLs). We quantify the effects of state medical marijuana laws on the health and labor supply of adults age 51 and older, focusing on the 55 percent with one or more medical conditions with symptoms that may respond to medical marijuana. We use longitudinal data from the Health and Retirement Study to estimate event study and differences‐in‐differences regression models. Three principle findings emerge from our analysis. First, active state medical marijuana laws lead to lower pain and better self‐assessed health among older adults. Second, state medical marijuana laws lead to increases in older adult labor supply, with effects concentrated on the intensive margin. Third, the effects of MMLs are largest among older adults with a health condition that would qualify for legal medical marijuana use under current state laws. Findings highlight the role of health policy in supporting work among older adults and the importance of including older adults in assessments of state medical marijuana laws.”

https://onlinelibrary.wiley.com/doi/10.1002/pam.22122

https://www.jhsph.edu/news/news-releases/2019/medical-marijuana-laws-linked-to-health-and-labor-supply-benefits-in-older-adults.html?fbclid=IwAR2X_qV1jKU4Hj41KBHAr25o20CBZrWEIqfkcxCxzepC_2NLvsSRxeCNA9g

“Medical marijuana may increase productivity in older adults, Johns Hopkins study suggests” https://www.news5cleveland.com/news/national/medical-marijuana-may-increase-productivity-in-older-adults-johns-hopkins-study-suggests

Daily Practice Managing Resistant Multiple Sclerosis Spasticity With Delta-9-Tetrahydrocannabinol: Cannabidiol Oromucosal Spray: A Systematic Review of Observational Studies.

 Image result for journal of central nervous system disease“Spasticity is one of the most common symptoms in people with multiple sclerosis (MS). Conventional anti-spasticity agents have limitations in their efficacy and tolerability.

Delta-9-tetrahydrocannabinol: cannabidiol (THC:CBD) spray, a cannabinoid-based medicine, is approved as an add-on therapy for MS spasticity not adequately controlled by other anti-spasticity medications. The results from randomized controlled trials (RCTs) have demonstrated a reduction in the severity of spasticity and associated symptoms. However, RCTs do not always reflect real-life outcomes. We systematically reviewed the complementary evidence from non-interventional real-world studies.

METHODS:

A systematic literature review was conducted to identify all non-RCT publications on THC:CBD spray between 2011 and 2017. Data on study design, patient characteristics, effectiveness, and safety outcomes were extracted from those publications meeting our inclusion criteria.

RESULTS:

In total, we reviewed 14 real-world publications including observational studies and treatment registries. The proportion of patients reaching the threshold of minimal clinical important difference (MCID), with at least a 20% reduction of the spasticity Numeric Rating Scale (NRS) score after 4 weeks ranged from 41.9% to 82.9%. The reduction in the mean NRS spasticity score after 4 weeks was maintained over 6-12 months. The average daily dose was five to six sprays. Delta-9-tetrahydrocannabinol: cannabidiol was well tolerated in the evaluated studies in the same way as in the RCTs. No new or unexpected adverse events or safety signals were reported in everyday clinical practice.

CONCLUSIONS:

The data evaluated in this systematic review provide evidence for the efficacy and safety of THC:CBD in clinical practice and confirm results obtained in RCTs.”

https://www.ncbi.nlm.nih.gov/pubmed/30886530

https://journals.sagepub.com/doi/10.1177/1179573519831997

Cannabimimetic plants: are they new cannabinoidergic modulators?

“Phytochemicals and secondary metabolites able to interact with the endocannabinoid system (Cannabimimetics) have been recently described in a broad range of plants and fruits. These findings can open new alternative avenues to explore for the development of novel therapeutic compounds. The cannabinoids regulate many physiological and pathological functions in both animals and plants. Cannabis sativa is the main plant that produces phytocannabinoids inside resins capable to defend the plant from the aggression of parasites and herbivores. Animals produce anandamide and 2-arachidonoyl glycerol, which thanks to binding with main receptors such as type-1 cannabinoid receptor (CB1R) and the type-2 cannabinoid receptor (CB2R) are involved in inflammation processes and several brain functions. Endogenous cannabinoids, enzymes for synthesis and degradation of cannabinoids, and CB1R and CB2R constitute the endocannabinoid system (ECS). Other plants can produce cannabinoid-like molecules such as perrottetinene extracted from Radula perrottetii, or anandamide and 2-arachidonoyl glycerol extracted from some bryophytes. Moreover, several other secondary metabolites can also interact with the ECS of animals and take the name of cannabimimetics. These phytoextracts not derived from Cannabis sativa can act as receptor agonists or antagonist, or enzyme inhibitors of ECS and can be involved in the inflammation, oxidative stress, cancer, and neuroprotection. Finally, given the evolutionary heterogeneity of the cannabimimetic plants, some authors speculated on the fascinating thesis of the evolutionary convergence between plants and animals regarding biological functions of ECS. The review aims to provide a critical and complete assessment of the botanical, chemical and therapeutic aspects of cannabimimetic plants to evaluate their spread in the world and medicinal potentiality.”

https://www.ncbi.nlm.nih.gov/pubmed/30877436

https://link.springer.com/article/10.1007%2Fs00425-019-03138-x

Beneficial and deleterious effects of cannabinoids in the brain: the case of ultra-low dose THC.

Publication Cover

“This article reviews the neurocognitive advantages and drawbacks of cannabinoid substances, and discusses the possible physiological mechanisms that underlie their dual activity. The article further reviews the neurocognitive effects of ultra-low doses of ∆9-tetrahydrocannabinol (THC; 3-4 orders of magnitude lower than the conventional doses) in mice, and proposes such low doses of THC as a possible remedy for various brain injuries and for the treatment of age-related cognitive decline.”

https://www.ncbi.nlm.nih.gov/pubmed/30864864

https://www.tandfonline.com/doi/abs/10.1080/00952990.2019.1578366?journalCode=iada20

Cannabinoid Use in Patients With Gastroparesis and Related Disorders: Prevalence and Benefit.

 

Image result for Am J Gastroenterol.

“Gastroparesis (Gp) can be a challenging disorder to manage due to the paucity of treatment options. We do not know how frequently patients with Gp symptoms resort to cannabinoids to address their symptoms. This study (i) determines the prevalence of cannabinoid use in patients with Gp symptoms, (ii) describes the patients with Gp symptoms using cannabinoids, and (iii) assesses the patients’ perceived benefit of cannabinoids for Gp symptoms.

METHODS:

Consecutive outpatients with symptoms suggestive of Gp seen on follow-up at our academic center from June 2018 to September 2018 filled out questionnaires on their symptoms and the current treatments.

RESULTS:

Of 197 patients, nearly half (n = 92, 46.7%) reported current (35.5%) or past (11.2%) use of cannabinoids, including tetrahydrocannabinol (n = 63), dronabinol (n = 36), and/or cannabidiol (n = 16). Of these, most perceived improvement in Gp symptoms from cannabinoids (93.5% with tetrahydrocannabinol, 81.3% with cannabidiol, and 47.2% with dronabinol). Cannabinoids were used most commonly via smoking (n = 46). Patients taking cannabinoids were younger (41.0 ± 15.4 vs 48.0 ± 15.9 years; P < 0.01) and had a higher Gastroparesis Cardinal Symptom Index total score (3.4 ± 1.0 vs 2.8 ± 1.3; P < 0.01) compared with patients with no history of cannabinoid use.

CONCLUSIONS:

A third of patients with Gp symptoms actively use cannabinoids for their chronic symptoms. Most of these patients perceive improvement in their symptoms with cannabinoids. Patients taking cannabinoids were younger and more symptomatic than those not taking cannabinoids. Further studies on the efficacy and safety of cannabinoids in Gp will be useful.”

https://www.ncbi.nlm.nih.gov/pubmed/30865015

https://journals.lww.com/ajg/Abstract/2019/06000/Cannabinoid_Use_in_Patients_With_Gastroparesis_and.23.aspx