The prescription of medical cannabis by a transitional pain service to wean a patient with complex pain from opioid use following liver transplantation: a case report.

Canadian Journal of Anesthesia/Journal canadien d'anesthésie

“The purpose of this case report is to describe a patient with a preoperative complex pain syndrome who underwent liver transplantation and was able to reduce his opioid consumption significantly following the initiation of treatment with medical cannabis.

CLINICAL FEATURES:

A 57-yr-old male with a history of hepatitis C cirrhosis underwent liver transplantation. Preoperatively, he was taking hydromorphone 2-8 mg⋅day-1 for chronic abdominal pain. Postoperatively, he was given intravenous patient-controlled analgesia through which he received hydromorphone 30 mg⋅day-1. Our multidisciplinary Transitional Pain Service was involved with managing his moderate to severe acute postsurgical pain in hospital and continued with weaning him from opioid medications after discharge. It was difficult to wean the patient from opioids, and he was subsequently given medical cannabis at six weeks postoperatively with remarkable effect. By the fifth postoperative month, his use of opioids had tapered to 6 mg⋅day-1 of hydromorphone, and his functional status was excellent on this regimen.

CONCLUSION:

Reductions in opioid consumption were achieved with the administration of medical cannabis in a patient with acute postoperative pain superimposed on a chronic pain syndrome and receiving high doses of opioids. Concurrent benefits of initiating medical cannabis may include improvements in pain profile and functional status along with reductions in opioid-related side effects. This highlights the potential for medical cannabis as an adjunct medication for weaning patients from opioid use.”

http://www.ncbi.nlm.nih.gov/pubmed/26507533

Prospects for Creation of Cardioprotective Drugs Based on Cannabinoid Receptor Agonists.

“Cannabinoids can mimic the infarct-reducing effect of early ischemic preconditioning, delayed ischemic preconditioning, and ischemic postconditioning against myocardial ischemia/reperfusion. They do this primarily through both CB1 and CB2 receptors.

Cannabinoids are also involved in remote preconditioning of the heart.

The cannabinoid receptor ligands also exhibit an antiapoptotic effect during ischemia/reperfusion of the heart.

The acute cardioprotective effect of cannabinoids is mediated by activation of protein kinase C, extracellular signal-regulated kinase, and p38 kinase.

The delayed cardioprotective effect of cannabinoid anandamide is mediated via stimulation of phosphatidylinositol-3-kinase-Akt signaling pathway and enhancement of heat shock protein 72 expression.

The delayed cardioprotective effect of another cannabinoid, Δ9-tetrahydrocannabinol, is associated with augmentation of nitric oxide (NO) synthase expression, but data on the involvement of NO synthase in the acute cardioprotective effect of cannabinoids are contradictory.

The adenosine triphosphate-sensitive K+ channel is involved in the synthetic cannabinoid HU-210-induced cardiac resistance to ischemia/reperfusion injury.

Cannabinoids inhibit Na+/Ca2+ exchange via peripheral cannabinoid receptor (CB2) activation that may also be related to the antiapoptotic and cardioprotective effects of cannabinoids.

The cannabinoid receptor agonists should be considered as prospective group of compounds for creation of drugs that are able to protect the heart against ischemia-reperfusion injury in the clinical setting.”

http://www.ncbi.nlm.nih.gov/pubmed/26487546

Polypharmacology Shakes Hands with Complex Aetiopathology.

“Chronic diseases are due to deviations of fundamental physiological systems, with different pathologies being characterised by similar malfunctioning biological networks.

The ensuing compensatory mechanisms may weaken the body’s dynamic ability to respond to further insults and reduce the efficacy of conventional single target treatments.

The multitarget, systemic, and prohomeostatic actions emerging for plant cannabinoids exemplify what might be needed for future medicines.

Indeed, two combined cannabis extracts were approved as a single medicine (Sativex®), while pure cannabidiol, a multitarget cannabinoid, is emerging as a treatment for paediatric drug-resistant epilepsy.

Using emerging cannabinoid medicines as an example, we revisit the concept of polypharmacology and describe a new empirical model, the ‘therapeutic handshake’, to predict efficacy/safety of compound combinations of either natural or synthetic origin.”

http://www.ncbi.nlm.nih.gov/pubmed/26434643

A comparison of cannabidiolic acid with other treatments for anticipatory nausea using a rat model of contextually elicited conditioned gaping.

“The effectiveness of cannabidiolic acid (CBDA) was compared with other potential treatments for anticipatory nausea (AN), using a rat model of contextually elicited conditioned gaping reactions.

The potential of ondansetron (OND), Δ(9)-tetrahydrocannabinol (THC), chlordiazepoxide (CDP), CBDA, and co-administration of CBDA and tetrahydrocannabinolic acid (THCA) to reduce AN and modify locomotor activity was evaluated…

CBDA has therapeutic potential as a highly potent and selective treatment for AN without psychoactive or locomotor effects.”

http://www.ncbi.nlm.nih.gov/pubmed/24595502

The phytocannabinoid, Δ⁹-tetrahydrocannabivarin, can act through 5-HT₁A receptors to produce antipsychotic effects.

“This study aimed to address the questions of whether Δ(9)-tetrahydrocannabivarin (THCV) can (i) enhance activation of 5-HT1 A receptors in vitro and (ii) induce any apparent 5-HT₁A receptor-mediated antipsychotic effects in vivo…

Our findings suggest that THCV can enhance 5-HT₁A receptor activation, and that some of its apparent antipsychotic effects may depend on this enhancement.

We conclude that THCV has therapeutic potential for ameliorating some of the negative, cognitive and positive symptoms of schizophrenia.”

http://www.ncbi.nlm.nih.gov/pubmed/25363799

Control of Breast Cancer by the Endocannabinoid System

G

“Activation of the endocannabinoid system through CB1, CB2 and additional receptor subtypes results in the inhibition of a broad range of cancers.

The endocannabinoid system was discovered through research focusing on the classical cannabinoid agonist, ?9-tetrahydrocannabinol (?9-THC), and other synthetic cannabinoids.

This proposal will focus on the potential treatment of human breast cancer using cannabinoids as selective antitumor agents.

We have found that cannabinoid compounds activating CB1, CB2 and additional receptor subtypes can inhibit breast cancer cell proliferation and invasiveness and we have discovered down-stream targets that potentially link cannabinoid receptor stimulation to these effects.

Furthermore, our preliminary studies provide evidence that endogenous endocannabinoid tone tonically inhibits metastatic breast cancer cell proliferation and invasiveness through the activation of cannabinoid receptors.

Our preliminary data also suggests that cannabinoid compounds possess selective efficacy, having less adverse effects on the normal human cells from which the breast cancers arise.

Since toxicity in healthy tissue limits the efficacy of current cancer treatments, discovering the mechanism behind selective efficacy in human tissues is of clinical importance.

Cannabinoids can inhibit multiple types of tumor growth in vivo…

Testing the hypotheses outlined in the application may lead to the development of effective inhibitors of breast, and perhaps other, cancers.

This research may also elucidate novel mechanisms related to the anticancer activity of cannabinoids, and will serve to develop the career of the candidate in the field of cancer biology.”

 http://grantome.com/grant/NIH/K01-CA111723-01A2

http://www.thctotalhealthcare.com/category/breast-cancer/

Cannabis for the Management of Pain: Assessment of Safety Study (COMPASS).

“Cannabis is widely used as a self-management strategy by patients with a wide range of symptoms and diseases including chronic noncancer pain.

The safety of cannabis use for medical purposes has not been systematically evaluated. We conducted a prospective cohort study to describe safety issues among subjects with chronic noncancer pain.

A standardized herbal cannabis product (12.5% THC) was dispensed to eligible subjects for a one-year period; controls were subjects with chronic pain from the same clinics who were not cannabis users.

The primary outcome consisted of serious adverse events (SAEs) and non-serious adverse events (AEs). Secondary safety outcomes included pulmonary and neurocognitive function and standard hematology, biochemistry, renal, liver and endocrine function.

Secondary efficacy parameters included pain and other symptoms, mood, and quality of life.

Two hundred and sixteen individuals with chronic pain were recruited to the cannabis group (141 current users and 58 ex-users) and 215 controls (chronic pain but no current cannabis use) from seven clinics across Canada. The median daily cannabis dose was 2.5g/d.

There was no difference in risk of SAEs between groups.

Medical cannabis users were at increased risk of non-serious AEs; most were mild to moderate. There were no differences in secondary safety assessments.

Quality-controlled herbal cannabis, when used by cannabis-experienced patients as part of a monitored treatment program over one year, appears to have a reasonable safety profile.

This study evaluated the safety of cannabis use by patients with chronic pain over one year. The study found that there was a higher rate of adverse events among cannabis users compared to controls but not for serious adverse events at an average dose of 2.5g herbal cannabis per day.”

http://www.ncbi.nlm.nih.gov/pubmed/26385201

http://www.thctotalhealthcare.com/category/pain-2/

Effect of combined doses of Δ9-tetrahydrocannabinol (THC) and cannabidiolic acid (CBDA) on acute and anticipatory nausea using rat (Sprague- Dawley) models of conditioned gaping.

“Δ9-Tetrahydrocannabinol (THC) and cannabidiolic acid (CBDA) found in cannabis both reduce the distressing symptom of nausea…

Combined subthreshold doses of THC  and CBDA reduced acute nausea.

Higher doses of THC or CBDA alone, as well as these combined doses also reduced acute nausea.

Combined subthreshold doses of THC:CBDA are particularly effective as a treatment for acute nausea. At higher doses, CBDA may attenuate THC-induced interference with learning.”

http://www.ncbi.nlm.nih.gov/pubmed/26381155

Neural correlates of cannabidiol and Δ9-tetrahydrocannabinol interactions in mice: implications for medical cannabis.

“It has been proposed that medicinal strains of cannabis and therapeutic preparations would be safer with a more balanced concentration ratio of Δ9-tetrahydrocannabinol (THC) to cannabidiol (CBD), as CBD reduces the adverse psychotropic effects of THC.

The aim of this study is to investigate whether CBD modulates THC-induced functional effects and c-Fos expression in a 1:1 dose ratio that approximates therapeutic strains of cannabis and nabiximols.

These data re-affirm that CBD modulates the pharmacological actions of THC and provide information regarding brain regions involved in the interaction between CBD and THC.”

http://www.ncbi.nlm.nih.gov/pubmed/26377899