α-Pinene: A never-ending story

Phytochemistry“α-Pinene represents a member of the monoterpene class and is highly distributed in higher plants like conifers, Juniper ssp. and Cannabis ssp.

α-Pinene has been used to treat respiratory tract infections for centuries. Furthermore, it plays a crucial role in the fragrance and flavor industry. In vitro assays have shown an enantioselective profile of (+)- and (-)-α-pinene for antibacterial and insecticidal activity, respectively.”

https://pubmed.ncbi.nlm.nih.gov/34365295/

https://www.sciencedirect.com/science/article/pii/S0031942221002065?via%3Dihub

Image 1

“α-Pinene Enhances the Anticancer Activity of Natural Killer Cells via ERK/AKT Pathway. Our findings demonstrate that α-pinene activates NK cells and increases NK cell cytotoxicity, suggesting it is a potential compound for cancer immunotherapy.” https://pubmed.ncbi.nlm.nih.gov/33440866/

“α-Pinene inhibits tumor invasion through downregulation of nuclear factor (NF)-κB-regulated matrix metalloproteinase-9 gene expression in MDA-MB-231 human breast cancer cells. These results suggest that α-pinene has a significant effect on the inhibition of tumor invasion and may potentially be developed into an anti-metastatic drug.”   https://applbiolchem.springeropen.com/articles/10.1007/s13765-016-0175-6

A Comparative Study on Hemp (Cannabis sativa) Essential Oil Extraction Using Traditional and Advanced Techniques.

 Image result for pubmed “A comparative study of Cannabis sativa (Hemp) essential constituents obtained by using Supercritical Fluid Extraction (SCFE), Steam Distillation (SD) and Hydrodistillation (HD) is presented here. The optimized extraction temperatures were 130,110 and 50 ℃ for hydrodistillation, steam distillation and supercritical fluid extraction respectively. The essential oil of C. sativa was analyzed by using Gas chromatography mass spectrometry (GC-MS). A total of 33, 30 and 31 components have been identified in HD, SD and SCFE respectively. Yield of essential oil using SCFE (0.039%) was more than HD (0.025%) and SD (0.035%) extraction respectively. The main component of sesquiterpenes obtained by hydrodistillation at 130 ℃ with their percentages included caryophyllene (40.58%), trans-α-bergamotene (5.41%), humulene (10.97%), cis-β-farnesene (8.53%) and monoterpenes included α-pinene (2.13%), d-limonene (6.46%), p-cymol (0.65%) and cineole (2.58%) respectively. The main component of sesquiterpenes obtained by SD steam distillation at 110 ℃ including caryophyllene (38.60%) trans-α-bergamotene (4.22%), humulene (10.26%), cis-β-farnesene (6.67%) and monoterpenes included α-pinene (3.21%), d-limonene (7.07%), p-cymol (2.59%) and cineole (3.88%) whereas the more percentages of major components were obtained by SCFE at 50 ℃ included caryophyllene (44.31%), trans-α-bergamotene (6.79%), humulene (11.97%) cis-β-farnesene (9.71%) and monoterpenes included α-pinene (0.45%), d-limonene (2.13%) p-cymol (0.19%) and cineole (1.38 %) respectively. We found yield/efficiency, chemical composition, quality of the essential oils by supercritical fluid extraction superior in terms of modern, green, saving energy and a rapid approach as compared to traditional techniques.” https://www.ncbi.nlm.nih.gov/pubmed/30221908
]]>