“Neuroinflammation plays a major role in postoperative cognitive dysfunction (POCD). Accumulated evidence indicates that cannabinoid receptor type 2 (CB2R) can mediate anti-inflammatory and immunomodulatory effects in part by controlling microglial activity. These findings indicate that CB2R may modulate the neuroinflammatory and cognitive impairment in a mouse model of orthopedic surgery, and the activation of CB2R may effectively ameliorate the hippocampal-dependent memory loss of mice in the early postoperative stage.” https://www.ncbi.nlm.nih.gov/pubmed/28724382 https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-017-0913-7]]>
Tag Archives: anti-inflammatory
Amyloid proteotoxicity initiates an inflammatory response blocked by cannabinoids.
The synthetic cannabinoid WIN55212-2 ameliorates traumatic spinal cord injury via inhibition of GAPDH/Siah1 in a CB2-receptor dependent manner.
“The essential role of GAPDH/Siah1 signaling pathway in the pathogenesis of various injurious conditions such as traumatic spinal cord injury (SCI) has been gradually recognized. However, the drugs targeting this signaling pathway are still lacking. The endocannabinoid system, including its receptors (CB1 and CB2), act as neuroprotective and immunomodulatory modulators in SCI. WIN55212-2, an agonist for CB1 and CB2 receptors, has been demonstrated with anti-inflammatory and anti-apoptotic effects in multiple neurological diseases. Therefore, the present study aimed to investigate whether WIN55212-2 could promote functional recovery after traumatic SCI via inhibition of the GAPDH/Siah1 signaling. In conclusion, our study indicates that, WIN55212-2 improves the functional recovery after SCI via inhibition of GAPDH/Siah1 cascades in a CB2 receptor dependent manner, indicative of its therapeutic potential for traumatic SCI or other traumatic conditions.” https://www.ncbi.nlm.nih.gov/pubmed/28716633]]>
Highly selective CB2 receptor agonist A836339 has gastroprotective effect on experimentally induced gastric ulcers in mice.
“Cannabinoid type 2 (CB2) receptors are distributed in central and peripheral tissues, including immunocytes and the gastrointestinal (GI) tract, suggesting that CB2 receptor agonists represent potential therapeutics in GI inflammatory states.
In this study, we investigated the effect of highly selective CB2 agonist, A836339, on the development of gastric lesions.
Activation of CB2 receptors exhibited gastroprotective effect through enhancement of anti-oxidative pathways in the stomach. Activation of CB2 receptors may thus become a novel therapeutic approach in the treatment of GU.”
“Clinical studies suggest that diets rich in ω-3 polyunsaturated fatty acids (PUFAs) provide beneficial anti-inflammatory effects, in part through their conversion to bioactive metabolites. Here we report on the endogenous production of a previously unknown class of ω-3 PUFA-derived lipid metabolites that originate from the crosstalk between endocannabinoid and cytochrome P450 (CYP) epoxygenase metabolic pathways. The ω-3 endocannabinoid epoxides are derived from docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) to form epoxyeicosatetraenoic acid-ethanolamide (EEQ-EA) and epoxydocosapentaenoic acid-ethanolamide (EDP-EA), respectively. Both EEQ-EAs and EDP-EAs are endogenously present in rat brain and peripheral organs as determined via targeted lipidomics methods. These metabolites were directly produced by direct epoxygenation of the ω-3 endocannabinoids, docosahexanoyl ethanolamide (DHEA) and eicosapentaenoyl ethanolamide (EPEA) by activated BV-2 microglial cells, and by human CYP2J2. Neuroinflammation studies revealed that the terminal epoxides 17,18-EEQ-EA and 19,20-EDP-EA dose-dependently abated proinflammatory IL-6 cytokines while increasing anti-inflammatory IL-10 cytokines, in part through
“Parkinson’s disease (PD) is one of the most common neurodegenerative disorders and is characterized by the loss of dopaminergic neurons in the substantia nigra (SN). Although the causes of PD are not understood, evidence suggests that its pathogenesis is associated with oxidative stress and inflammation. Recent studies have suggested a protective role of the
“Several studies highlight a key involvement of endocannabinoid (EC) system in autism pathophysiology. The EC system is a complex network of lipid signaling pathways comprised of arachidonic acid-derived compounds (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), their G-protein-coupled receptors (