Hemisphere-dependent endocannabinoid system activity in prefrontal cortex and hippocampus of the Flinders Sensitive Line rodent model of depression.

Neurochemistry International“Altered endocannabinoid (eCB) signaling is suggested as an important contributor to the pathophysiology of depression.

In summary, our data suggest a decreased eCB signalling in the FSL rats, which could contribute to the depressive-like behaviour.

Interestingly, the altered eCB system activity appear to be hemisphere-specific in the limbic regions.

Our study support the existing literature and showed altered eCB system activity in this particular animal model of depression.”

https://www.ncbi.nlm.nih.gov/pubmed/30716357

https://www.sciencedirect.com/science/article/abs/pii/S0197018618305151?via%3Dihub

“Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Results of this study show that Delta(9)-THC and other cannabinoids exert antidepressant-like actions, and thus may contribute to the overall mood-elevating properties of cannabis.”   https://www.ncbi.nlm.nih.gov/pubmed/20332000

Cannabinoid CB1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior.

 Image result for nature medicine“Major depressive disorder is a devastating psychiatric disease that afflicts up to 17% of the world’s population. Postmortem brain analyses and imaging studies of patients with depression have implicated basal lateral amygdala (BLA) dysfunction in the pathophysiology of depression. However, the circuit and molecular mechanisms through which BLA neurons modulate depressive behavior are largely uncharacterized. Here, in mice, we identified that BLA cholecystokinin (CCK) glutamatergic neurons mediated negative reinforcement via D2 medium spiny neurons (MSNs) in the nucleus accumbens (NAc) and that chronic social defeat selectively potentiated excitatory transmission of the CCKBLA-D2NAc circuit in susceptible mice via reduction of presynaptic cannabinoid type-1 receptor (CB1R). Knockdown of CB1R in the CCKBLA-D2NAc circuit elevated synaptic activity and promoted stress susceptibility. Notably, selective inhibition of the CCKBLA-D2NAc circuit or administration of synthetic cannabinoids in the NAc was sufficient to produce antidepressant-like effects. Overall, our studies reveal the circuit and molecular mechanisms of depression.”

https://www.ncbi.nlm.nih.gov/pubmed/30643290

https://www.nature.com/articles/s41591-018-0299-9

“Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Results of this study show that Delta(9)-THC and other cannabinoids exert antidepressant-like actions, and thus may contribute to the overall mood-elevating properties of cannabis.”  https://www.ncbi.nlm.nih.gov/pubmed/20332000

Structure of a Signaling Cannabinoid Receptor 1-G Protein Complex.

Image result for cell journal

“Cannabis elicits its mood-enhancing and analgesic effects through the cannabinoid receptor 1 (CB1), a G protein-coupled receptor (GPCR) that signals primarily through the adenylyl cyclase-inhibiting heterotrimeric G protein Gi. Activation of CB1-Gi signaling pathways holds potential for treating a number of neurological disorders and is thus crucial to understand the mechanism of Giactivation by CB1.

Here, we present the structure of the CB1-Gi signaling complex bound to the highly potent agonist MDMB-Fubinaca (FUB), a recently emerged illicit synthetic cannabinoid infused in street drugs that have been associated with numerous overdoses and fatalities.”

https://www.ncbi.nlm.nih.gov/pubmed/30639101

https://linkinghub.elsevier.com/retrieve/pii/S0092867418315654

“Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Results of this study show that Delta(9)-THC and other cannabinoids exert antidepressant-like actions, and thus may contribute to the overall mood-elevating properties of cannabis.”   https://www.ncbi.nlm.nih.gov/pubmed/20332000

Cannabis and Mood Disorders.

 “The present review will provide an overview of the neurobiology, epidemiology, clinical impact, and treatment of cannabis use disorder (CUD) in mood disorders.

Patients with mood disorders including major depressive disorder (MDD) and bipolar disorder (BD) have higher rates of cannabis use, and CUD compared to the general population. Reasons for this association are not clear, nor are the putative therapeutic effects of cannabis use, or its components delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), in these illnesses.

Cannabis use may be associated mood disorders, but more research is needed to increase our understanding of the mechanisms for this association, and to develop more effective treatments for this comorbidity.”

https://www.ncbi.nlm.nih.gov/pubmed/30643708

https://link.springer.com/article/10.1007%2Fs40429-018-0214-y

“Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Results of this study show that Delta(9)-THC and other cannabinoids exert antidepressant-like actions, and thus may contribute to the overall mood-elevating properties of cannabis.”   https://www.ncbi.nlm.nih.gov/pubmed/20332000

Effects of cannabidiol in males and females in two different rat models of depression.

“The current study explores the therapeutic potential of Cannabidiol (CBD), a compound in the Cannabis plant, using both sexes of 2 “depressive-like” genetic models, Wistar Kyoto (WKY) and Flinders Sensitive Line (FSL) rats. Rats ingested CBD (30 mg/kg) orally. In the saccharin preference test, following a previous report of a pro-hedonic effect of CBD in male WKY, we now found similar results in female WKY. CBD also decreased immobility in the forced swim test in males (both strains) and in female WKY. These findings suggest a role for CBD in treating mental disorders with prominent symptoms of helplessness and anhedonia.” https://www.ncbi.nlm.nih.gov/pubmed/30571957 https://www.sciencedirect.com/science/article/abs/pii/S0031938418307509?via%3Dihub]]>

Cannabidiol regulates the expression of hypothalamus-pituitary-adrenal axis-related genes in response to acute restraint stress.

SAGE Journals “Research interest has grown around the potential therapeutic use of cannabidiol in mood-related disorders, due to its anxiolytic and antidepressant-like effects. These have been partially attributed to its action as an allosteric modulator of 5-HTR1A. However, the exact mechanism supporting cannabidiol properties remains unclear.

Taken together, these data suggest the ability of cannabidiol to regulate acute stress hypothalamus-pituitary-adrenal axis activation might be explained, at least in part, by its action on 5-HTR1A receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/30324842
]]>