The protective effects of Δ9 -tetrahydrocannabinol against inflammation and oxidative stress in rat liver with fructose-induced hyperinsulinemia.

Journal of Pharmacy and Pharmacology banner

“A large amount of fructose is metabolized in the liver and causes hepatic functional damage. Δ9 -tetrahydrocannabinol (THC) is known as a therapeutic agent for clinical and experimental applications.

 

The study aims to investigate the effects of THC treatment on inflammation, lipid profiles and oxidative stress in rat liver with hyperinsulinemia.

 

According to the result, long-term and low-dose THC administration may reduce hyperinsulinemia and inflammation in rats to some extent.”

  https://www.ncbi.nlm.nih.gov/pubmed/30427077 https://onlinelibrary.wiley.com/doi/abs/10.1111/jphp.13042]]>

Cannabidiol restores differentiation capacity of LPS exposed adipose tissue mesenchymal stromal cells.

Experimental Cell Research “Multipotent mesenchymal stromal cells (MSCs) support wound healing processes. These cells express toll-like receptors (TLRs). TLRs perform important key functions when the immune system is confronted with danger signals. TLR ligation by lipopolysaccharides (LPS) activates MSCs and induces intracellular signaling cascades, which affect their differentiation profile, increase the release of inflammatory cytokines and the production of reactive oxygen species. Continuing exposure to LPS triggers prolonged inflammatory reactions, which may lead to deleterious conditions, e.g. non-healing wounds. Cannabidiol (CBD) exerts anti-inflammatory processes through cannabinoid receptor dependent and independent mechanisms. In the present study, we examined whether CBD could influence the inflammatory MSC phenotype. Exposure to LPS increased the release of IL-6, as well as other soluble factors, and elevated levels of oxidized macromolecules found in cell homogenisates. While the amount of IL-6 was unaffected, co-treatment with CBD reduced the oxidative stress acting on the cells. LPS inhibited adipogenic as well as chondrogenic differentiation, which was attenuated by CBD treatment. In the case of adipogenesis, the disinhibitory effect probably depended on CBD interaction with the peroxisome proliferator-activated receptor-γ. CBD could exert mild immunosuppressive properties on MSCs, while it most effectively acted anti-oxidatively and by restoring the differentiation capacity upon LPS treatment.” https://www.ncbi.nlm.nih.gov/pubmed/30036540 “Cannabidiol (CBD) reduces oxidative stress and restores adipogenesis and chondrogenesis of mesenchymal stromal cells (MSCs) upon lipopolysaccharides (LPS)  exposure.” https://linkinghub.elsevier.com/retrieve/pii/S0014482718304312
]]>