Cannabinoid-based drugs as anti-inflammatory therapeutics.

“In the nineteenth century, marijuana was prescribed by physicians for maladies ranging from eating disorders to rabies. However, as newer, more effective drugs were discovered and as the potential for abuse of marijuana was recognized, its use as a therapeutic became restricted, and only recently has its therapeutic potential been re-evaluated.

 

 Recent studies in animal models and in humans have produced promising results for the treatment of various disorders – such as obesity, cancer, and spasticity and tremor due to neuropathology – with drugs based on marijuana-derived cannabinoids.

 

 Moreover, as I discuss here, a wealth of information also indicates that these drugs have immunosuppressive and anti-inflammatory properties; therefore, on the basis of this mode of action, the therapeutic usefulness of these drugs in chronic inflammatory diseases is now being reassessed.”

 

http://www.ncbi.nlm.nih.gov/pubmed/15864274

News about therapeutic use of cannabis and endocannabinoid system.

“Growing basic research in recent years led to the discovery of the endocannabinoid system with a central role in neurobiology. New evidence suggests a therapeutic potential of cannabinoids in cancer chemotherapy-induced nausea and vomiting as well as in pain, spasticity and other symptoms in multiple sclerosis and movement disorders. Results of large randomized clinical trials of oral and sublingual Cannabis extracts will be known soon and there will be definitive answers to whether Cannabis has any therapeutic potential. Although the immediate future may lie in plant-based medicines, new targets for cannabinoid therapy focuses on the development of endocannabinoid degradation inhibitors which may offer site selectivity not afforded by cannabinoid receptor agonists.”  http://www.ncbi.nlm.nih.gov/pubmed/15033046

http://www.elsevier.es/es-revista-medicina-clinica-2-linkresolver-novedades-sobre-las-potencialidades-terapeuticas-13059327

[Cannabis and cannabinoids. Possibilities of their therapeutic use].

Abstract

“Newer aspects of therapeutic potentials of cannabis and cannabinoids are reviewed. The major active constituent of cannabis sativa, delta-9-tetrahydrocannabinol and synthetic cannabinoids are evaluated in several clinical trials on their antiemetic efficacy in cancer chemotherapy induced vomiting. 80% of patients refractory to standard antiemetic treatment could be improved with the synthetic cannabinoid levonantradol. Other therapeutic effects, which are presently investigated in clinical trials are analgesia, antispasticity, anticonvulsion and the reduction of intraocular pressure in glaucoma. The future goal of cannabinoid research is the separation between specific pharmacologic activities and undesirable psychotropic effects.”

http://www.ncbi.nlm.nih.gov/pubmed/7076098

Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

Philosophical Transactions of the Royal Society B: Biological Sciences: 367 (1607)

“Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive ‘multi-targeting’.”  https://www.ncbi.nlm.nih.gov/pubmed/23108552

“Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities”  http://rstb.royalsocietypublishing.org/content/367/1607/3353.long

[Potential therapeutic usefulness of cannabis and cannabinoids].

Abstract

“Diseases in which Cannabis and cannabinoids have demonstrated some medicinal putative properties are: nausea and vomiting associated with cancer chemotherapy, muscle spasticity (multiple sclerosis, movement disorders), pain, anorexia, epilepsy, glaucoma, bronchial asthma, neuroegenerative diseases, cancer, etc. Although some of the current data comes from clinical controlled essays, the majority are based on anecdotic reports. Basic pharmacokinetic and pharmacodynamic studies and more extensive controlled clinical essays with higher number of patients and long term studies are necessary to consider these compounds useful since a therapeutical point of view.”

http://www.ncbi.nlm.nih.gov/pubmed/11205042

Pharmacokinetics and pharmacodynamics of cannabinoids.

Abstract

“Delta(9)-Tetrahydrocannabinol (THC) is the main source of the pharmacological effects caused by the consumption of cannabis, both the marijuana-like action and the medicinal benefits of the plant. However, its acid metabolite THC-COOH, the non-psychotropic cannabidiol (CBD), several cannabinoid analogues and newly discovered modulators of the endogenous cannabinoid system are also promising candidates for clinical research and therapeutic uses. Cannabinoids exert many effects through activation of G-protein-coupled cannabinoid receptors in the brain and peripheral tissues. Additionally, there is evidence for non-receptor-dependent mechanisms. Natural cannabis products and single cannabinoids are usually inhaled or taken orally; the rectal route, sublingual administration, transdermal delivery, eye drops and aerosols have only been used in a few studies and are of little relevance in practice today. The pharmacokinetics of THC vary as a function of its route of administration. Pulmonary assimilation of inhaled THC causes a maximum plasma concentration within minutes, psychotropic effects start within seconds to a few minutes, reach a maximum after 15-30 minutes, and taper off within 2-3 hours. Following oral ingestion, psychotropic effects set in with a delay of 30-90 minutes, reach their maximum after 2-3 hours and last for about 4-12 hours, depending on dose and specific effect. At doses exceeding the psychotropic threshold, ingestion of cannabis usually causes enhanced well-being and relaxation with an intensification of ordinary sensory experiences. The most important acute adverse effects caused by overdosing are anxiety and panic attacks, and with regard to somatic effects increased heart rate and changes in blood pressure. Regular use of cannabis may lead to dependency and to a mild withdrawal syndrome. The existence and the intensity of possible long-term adverse effects on psyche and cognition, immune system, fertility and pregnancy remain controversial. They are reported to be low in humans and do not preclude legitimate therapeutic use of cannabis-based drugs. Properties of cannabis that might be of therapeutic use include analgesia, muscle relaxation, immunosuppression, sedation, improvement of mood, stimulation of appetite, antiemesis, lowering of intraocular pressure, bronchodilation, neuroprotection and induction of apoptosis in cancer cells.”

http://www.ncbi.nlm.nih.gov/pubmed/12648025

Cannabinoids in health and disease

Abstract

“Cannabis sativa L. preparations have been used in medicine for millenia. However, concern over the dangers of abuse led to the banning of the medicinal use of marijuana in most countries in the 1930s. Only recently, marijuana and individual natural and synthetic cannabinoid receptor agonists and antagonists, as well as chemically related compounds, whose mechanism of action is still obscure, have come back to being considered of therapeutic value. However, their use is highly restricted. Despite the mild addiction to cannabis and the possible enhancement of addiction to other substances of abuse, when combined with cannabis, the therapeutic value of cannabinoids is too high to be put aside. Numerous diseases, such as anorexia, emesis, pain, inflammation, multiple sclerosis, neurodegenerative disorders (Parkinson’s disease, Huntington’s disease, Tourette’s syndrome, Alzheimer’s disease), epilepsy, glaucoma, osteoporosis, schizophrenia, cardiovascular disorders, cancer, obesity, and metabolic syndrome-related disorders, to name just a few, are being treated or have the potential to be treated by cannabinoid agonists/antagonists/cannabinoid-related compounds. In view of the very low toxicity and the generally benign side effects of this group of compounds, neglecting or denying their clinical potential is unacceptable – instead, we need to work on the development of more selective cannabinoid receptor agonists/antagonists and related compounds, as well as on novel drugs of this family with better selectivity, distribution patterns, and pharmacokinetics, and – in cases where it is impossible to separate the desired clinical action and the psychoactivity – just to monitor these side effects carefully.”

Cancer

“The antiproliferative action of cannabinoids on cancer cells was first noticed in the 1970s. Since then cannabinoids were found to act on various cancer cell lines, through various mechanisms. Cannabinoids were also found to be suppressors of angiogenesis and tumor invasion. Our knowledge on the anticancer activity of cannabinoids is rapidly expanding.”

Conclusion

“Many drugs used today can cause addiction and are misused and abused, for example opiates, cocaine, benzodiazepines, barbiturates, cholinergic agonists, ketamine, dopaminergic agonists, amphetamines, and others. Nevertheless they are still an important part of our pharmacopeia. Marijuana was used for centuries as a medicinal plant, but during the last century, because of its abuse and addictive potential it was taken out of clinical practice. Now, we believe that its constituents and related compounds should be brought back to clinical use. The reasons are: (i) the therapeutic potential of CB1 agonists is huge, as described in this review; (ii) for local action, topical CB1 agonists, or agonists that do not penetrate the blood-brain barrier, can be used; (iii) cannabinoids acting specifically on CB2 receptors, which cause no psychoactivity, may be used on peripheral targets (such as osteoporosis, which is only one of many examples); (iv) there are additional, new cannabinoid targets distinct from the CB1/CB2 receptors which do not cause psychoactivity; (v) there are cannabinoids, such as CBD, which do not cause psychoactivity, but have various therapeutic effects.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202504/

Update on the endocannabinoid system as an anticancer target.

Image result for Expert Opin Ther Targets.

“INTRODUCTION:

Recent studies have shown that the endocannabinoid system (ECS) could offer an attractive antitumor target. Numerous findings suggest the involvement of this system (constituted mainly by cannabinoid receptors, endogenous compounds and the enzymes for their synthesis and degradation) in cancer cell growth in vitro and in vivo.

AREAS COVERED:

This review covers literature from the past decade which highlights the potential of targeting the ECS for cancer treatment. In particular, the levels of endocannabinoids and the expression of their receptors in several types of cancer are discussed, along with the signaling pathways involved in the endocannabinoid antitumor effects. Furthermore, the beneficial and adverse effects of old and novel compounds in clinical use are discussed.

EXPERT OPINION:

One direction that should be pursued in antitumor therapy is to select compounds with reduced psychoactivity. This is known to be connected to the CB1 receptor; thus, targeting the CB2 receptor is a popular objective. CB1 receptors could be maintained as a target to design new compounds, and mixed CB1-CB2 ligands could be effective if they are able to not cross the BBB. Furthermore, targeting the ECS with agents that activate cannabinoid receptors or inhibitors of endogenous degrading systems such as fatty acid amide hydrolase inhibitors may have relevant therapeutic impact on tumor growth. Additional studies into the downstream consequences of endocannabinoid treatment are required and may illuminate other potential therapeutic targets.”  http://www.ncbi.nlm.nih.gov/pubmed/21244344

“Update on the endocannabinoid system as an anticancer target”  http://www.tandfonline.com/doi/abs/10.1517/14728222.2011.553606?journalCode=iett20

Use of cannabinoid receptor agonists in cancer therapy as palliative and curative agents.

Image result for Best Pract Res Clin Endocrinol Metab

“Cannabinoids (the active components of Cannabis sativa) and their derivatives have received renewed interest in recent years due to their diverse pharmacological activities. In particular, cannabinoids offer potential applications as anti-tumour drugs, based on the ability of some members of this class of compounds to limit cell proliferation and to induce tumour-selective cell death. Although synthetic cannabinoids may have pro-tumour effects in vivo due to their immunosuppressive properties, predominantly inhibitory effects on tumour growth and migration, angiogenesis, metastasis, and also inflammation have been described. Emerging evidence suggests that agonists of cannabinoid receptors expressed by tumour cells may offer a novel strategy to treat cancer. In this chapter we review the more recent results generating interest in the field of cannabinoids and cancer, and provide novel suggestions for the development, exploration and use of cannabinoid agonists for cancer therapy, not only as palliative but also as curative drugs.” https://www.ncbi.nlm.nih.gov/pubmed/19285265

“Use of cannabinoid receptor agonists in cancer therapy as palliative and curative agents” http://www.bprcem.com/article/S1521-690X(09)00005-0/abstract

Cannabis-derived substances in cancer therapy–an emerging anti-inflammatory role for the cannabinoids.

“Cannabinoids, the active components of the cannabis plant, have some clinical merit both as an anti-emetic and appetite stimulant in cachexic patients. Recently, interest in developing cannabinoids as therapies has increased following reports that they possess anti-tumour properties.

 Research into cannabinoids as anti-cancer agents is in its infancy, and has mainly focussed on the pro-apoptotic effects of this class of agent. Impressive anti-cancer activities have been reported; actions that are mediated in large part by disruptions to ubiquitous signalling pathways such as ERK and PI3-K. However, recent developments have highlighted a putative role for cannabinoids as anti-inflammatory agents. Chronic inflammation has been associated with neoplasia for sometime, and as a consequence, reducing inflammation as a way of impacting cancer presents a new role for these compounds.

 This article reviews the ever-changing relationship between cannabinoids and cancer, and updates our understanding of this class of agent. Furthermore, the relationship between chronic inflammation and cancer, and how cannabinoids can impact this relationship will be described.”

http://www.ncbi.nlm.nih.gov/pubmed/20925645