Cannabinoid Receptor CB2 Is Involved in Tetrahydrocannabinol-Induced Anti-Inflammation against Lipopolysaccharide in MG-63 Cells.

“Cannabinoid Δ9-tetrahydrocannabinol (THC) is effective in treating osteoarthritis (OA)…

Activation of cannabinoid receptor CB2 reduces inflammation; whether the activation CB2 is involved in THC-induced therapeutic action for OA is still unknown.

We hypothesized that the activation of CB2 is involved in THC-induced anti-inflammation in the MG-63 cells exposed to LPS, and the anti-inflammation is mediated by cofilin-1…

We found that THC suppressed the release of proinflammatory factors, including tumor necrosis factor α (TNF-α), interleukin- (IL-) 1β, IL-6, and IL-8, decreased nuclear factor-κB (NF-κB) expression, and inhibited the upregulation of cofilin-1 protein in the LPS-stimulated MG-63 cells.

These results suggested that CB2 is involved in the THC-induced anti-inflammation in LPS-stimulated MG-63 cells, and the anti-inflammation may be mediated by cofilin-1.”

http://www.ncbi.nlm.nih.gov/pubmed/25653478

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310496/

http://www.thctotalhealthcare.com/category/osteoarthritis/

Cannabinoid CB2 receptor stimulation attenuates brain edema and neurological deficits in a germinal matrix hemorrhage rat model.

“Germinal matrix hemorrhage (GMH) is one of the most common and devastating cerebrovascular events that affect premature infants, resulting in a significant socioeconomic burden. However, GMH has been largely unpreventable, and clinical treatments are mostly inadequate.

In the present study, we tested the hypothesis that a selective CB2 receptor agonist, could attenuate brain injury and neurological deficits…

This current study suggests a potential clinical utility for CB2R agonists as a potential therapy to reduce neurological injury and improve patient outcomes after GMH.”

http://www.ncbi.nlm.nih.gov/pubmed/25625355

Beneficial effects of cannabinoid receptor type 2 (CB2R) in injured skeletal muscle post-contusion.

“The aim of the current study was to investigate the effects of cannabinoid receptor type 2 (CB2R) on the repair process of injured skeletal muscle, which could potentially lay solid foundations as a novel target for curing muscular fibrosis in future…

These results revealed multiple effects of CB2R in systematically inhibiting fibrotic formation and improving muscle regeneration, alongside its potential for clinical application in patients with skeletal muscle injuries and diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/25588471

Cannabinoid inhibition of macrophage migration to the trans-activating (Tat) protein of HIV-1 is linked to the CB(2) cannabinoid receptor.

“Macrophages and macrophage-like cells are important targets of HIV-1 infection at peripheral sites and in the central nervous system…

 

Collectively, the pharmacological and biochemical knockdown data indicate that cannabinoid-mediated modulation of macrophage migration to the HIV-1 Tat protein is linked to the CB(2)cannabinoid receptor.

Furthermore, these results suggest that the CB(2) cannabinoid receptor has potential to serve as a therapeutic target for ablation of HIV-1-associated untoward inflammatory response.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846023/

 http://www.thctotalhealthcare.com/category/hivaids/

 

Type-2 cannabinoid receptor regulates proliferation, apoptosis, differentiation, and OPG/RANKL ratio of MC3T3-E1 cells exposed to Titanium particles.

“The type-2 cannabinoid receptor (CB2) is expressed in osteoblasts and plays a role in bone metabolism through regulation on bone mass and bone turnover, but the functional importance of CB2 in osteoblasts under Titanium (Ti) stimulation is incompletely understood.

This study aimed to investigate the CB2 expression in osteoblasts under Ti stimulation and the effects of CB2 activation on proliferation, apoptosis, differentiation, mineralization, OPG, and RANKL expression of MC3T3-E1 cells exposed to Ti particles…

In conclusion, CB2 activation has a favorable inhibitory effect on Ti-induced reactions in MC3T3-E1 cell through modulating proliferation, apoptosis, differentiation, and RANKL expression.

These findings suggest that activation of CB2 might be an effective therapeutic strategy to promote bone formation and reduce bone dissolution.”

http://www.ncbi.nlm.nih.gov/pubmed/25292314

Cannabinoid receptor type 2 activation in atherosclerosis and acute cardiovascular diseases.

“In the last decades, the cannabinoid system (comprising synthetic and endogenous cannabinoid agonists and antagonists, their receptors and degrading enzymes) has been shown to induce potent immunomodulatory activities in atherogenesis and acute ischemic complications.

Differently from the other cannabinoid receptors in which controversial results are reported, the selective activation of the cannabinoid receptor type 2 (CB2) has been shown to play anti-inflammatory and protective actions within atherosclerotic vessels and downstream ischemic peripheral organs.

CB2 is a transmembrane receptor that triggers protective intracellular pathways in cardiac, immune and vascular cells in both in human and animal models of atherosclerosis…

medications activating CB2 function in the circulation or peripheral target organs might be a promising approach against atherogenesis.

This review updates evidence from preclinical studies on different CB2-triggered pathways in atherosclerosis and acute ischemic events.”

http://www.ncbi.nlm.nih.gov/pubmed/25245379

Treatment with a Heme Oxygenase 1 Inducer Enhances the Antinociceptive Effects of µ-Opioid, δ-Opioid, and Cannabinoid 2 Receptors during Inflammatory Pain.

“The administration of µ-opioid receptor (MOR), δ-opioid receptor (DOR), and cannabinoid 2 receptor (CB2R) agonists attenuates inflammatory pain.

We investigated whether treatment with the heme oxygenase 1 (HO-1) inducer, cobalt protoporphyrin IX (CoPP), could modulate the local effects and expression of MOR, DOR, or CB2R during chronic inflammatory pain…

This study shows that the HO-1 inducer (CoPP) increased the local antinociceptive effects of MOR, DOR, and CB2R agonists during inflammatory pain by altering the peripheral expression of MOR and DOR.

Therefore, the coadministration of CoPP with local morphine, DPDPE, or JWH-015 may be a good strategy for the management of chronic inflammatory pain.”

http://www.ncbi.nlm.nih.gov/pubmed/25204546

Cannabinoid CB2 receptor (CB2R) stimulation delays rubrospinal mitochondrial-dependent degeneration and improves functional recovery after spinal cord hemisection by ERK1/2 inactivation.

“Spinal cord injury (SCI) is a devastating condition… Modulation of the endocannabinoid system (ECS) counteracts neurodegeneration, and pharmacological modulation of type-2 cannabinoid receptor (CB2R) is a promising therapeutic target for several CNS pathologies, including SCI…

These findings implicate the ECS, particularly CB2R, as part of the endogenous neuroprotective response that is triggered after SCI.

Thus, CB2R modulation might represent a promising therapeutic target that lacks psychotropic effects and can be used to exploit ECS-based approaches to counteract neuronal degeneration.”

http://www.ncbi.nlm.nih.gov/pubmed/25188514

http://www.thctotalhealthcare.com/category/spinal-cord-injury/

Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington’s disease.

An external file that holds a picture, illustration, etc.<br /><br />
Object name is nihms94694f6.jpg

“Cannabinoid agonists might serve as neuroprotective agents in neurodegenerative disorders… Cannabinoids may also offer neuroprotection in Huntington’s disease (HD)…

Here, we examined this hypothesis in a rat model ofHuntington’s disease (HD)…

Our results showed that only compounds able to activate CB2 receptors were capable of protecting striatal projection neurons from malonate-induced death. That CB2 receptor agonists are neuroprotective was confirmed…

…neuroprotection was attained exclusively with antioxidant cannabinoids like Δ9-tetrahydrocannabinol (Δ9-THC; or cannabidiol (CBD)…

In summary, our results demonstrate that stimulation of CB2 receptors protect the striatum against malonate toxicity, likely through a mechanism involving glial cells, in particular reactive microglial cells in which CB2 receptors would be upregulated in response to the lesion. Activation of these receptors would reduce the generation of proinflammatory molecules like TNF-alpha.

Altogether, our results support the hypothesis that CB2 receptors could constitute a therapeutic target to slowdown neurodegeneration in HD.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706932/

http://www.thctotalhealthcare.com/category/huntingtons/

Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity.

Brain

“Cannabinoid-derived drugs are promising agents for the development of novel neuroprotective strategies.

…in Huntington’s disease there is a very early downregulation of CB1 receptors in striatal neurons that, together with the undesirable psychoactive effects triggered by CB1 receptor activation, foster the search for alternative pharmacological treatments.

These findings support a pivotal role for CB2 receptors in attenuating microglial activation and preventing neurodegeneration that may pave the way to new therapeutic strategies for neuroprotection in Huntington’s disease as well as in other neurodegenerative disorders with a significant excitotoxic component.

Overall, the reduction of neuronal CB1 receptors and the upregulation of microglial CB2 receptors support a crucial role for the ECB system in the pathogenesis of Huntington’s disease.

The use of drugs targeting the ECB system via CB1 receptors aimed at restoring neurochemical alterations and palliating symptoms might constitute an interesting strategy for the management of Huntington’s disease and other neurodegenerative disorders with a significant excitotoxicity component.”

 http://brain.oxfordjournals.org/content/132/11/3152.long

http://www.thctotalhealthcare.com/category/huntingtons/