Prolonged oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and improves cognitive performance in Tg APP 2576 mice

“Background

Alzheimer’s disease (AD) brain shows an ongoing inflammatory condition and non-steroidal anti-inflammatories diminish the risk of suffering the neurologic disease. Cannabinoids are neuroprotective and anti-inflammatory agents with therapeutic potential.”

“… we have shown that chronically administered cannabinoid showed marked beneficial effects concomitant with inflammation reduction and increased Aβ clearance.”

“Cannabinoids, whether plant derived, synthetic or endocannabinoids, interact with two well characterized cannabinoid receptors, CB1 and CB2 . In addition, some cannabinoids may interact with other receptors, such as the TRPV1 receptor or the orphan receptor GPR55. The CB1 receptor is widely distributed, with a particularly high expression in brain, which contrasts with the limited expression of the CB2 receptor, which is characteristic of immune organs and cells. In fact, while CB1 receptors are expressed by all types of cells in the brain (neurons and glial cells), CB2 are mainly localized in microglial cells, the resident immune cell of the brain.”

“We and others have proposed cannabinoids as preventive treatment for AD, based on their neuroprotective and anti-inflammatory effects. Indeed, cannabinoids are able to decrease the release of cytokines and nitric oxide in cultured microglial cells induced by lipopolysacharide and Aβ addition. In several in vitro studies cannabidiol (CBD), the major non-psychotropic constituent of cannabis, has shown to be neuroprotective against β-amyloid (Aβ) addition to cultured cells.”

“Conclusions

In summary, cannabinoid agonists, in particular CB2 selective agonists, interfere with several interconnected events of importance in the pathophysiology of AD. These compounds by directly interacting with cannabinoid receptors, in particular CB2, decrease microglial activation thereby reducing inflammation and its consequences (eg cognitive deficits). At the same time they may indirectly have beneficial effects on microglial activation (eg decrease cytokine release) by lowering brain Aβ levels.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292807/

The non-psychoactive cannabis constituent cannabidiol is an orally effective therapeutic agent in rat chronic inflammatory and neuropathic pain.

Abstract

“Cannabidiol, the major psycho-inactive component of cannabis, has substantial anti-inflammatory and immunomodulatory effects. This study investigated its therapeutic potential on neuropathic (sciatic nerve chronic constriction) and inflammatory pain (complete Freund’s adjuvant intraplantar injection) in rats. In both models, daily oral treatment with cannabidiol (2.5-20 mg/kg to neuropathic and 20 mg/kg to adjuvant-injected rats) from day 7 to day 14 after the injury, or intraplantar injection, reduced hyperalgesia to thermal and mechanical stimuli. In the neuropathic animals, the anti-hyperalgesic effect of cannabidiol (20 mg/kg) was prevented by the vanilloid antagonist capsazepine (10 mg/kg, i.p.), but not by cannabinoid receptor antagonists. Cannabidiol’s activity was associated with a reduction in the content of several mediators, such as prostaglandin E(2) (PGE(2)), lipid peroxide and nitric oxide (NO), and in the over-activity of glutathione-related enzymes. Cannabidiol only reduced the over-expression of constitutive endothelial NO synthase (NOS), without significantly affecting the inducible form (iNOS) in inflamed paw tissues. Cannabidiol had no effect on neuronal and iNOS isoforms in injured sciatic nerve. The compound’s efficacy on neuropathic pain was not accompanied by any reduction in nuclear factor-kappaB (NF-kappaB) activation and tumor necrosis factor alpha (TNFalpha) content. The results indicate a potential for therapeutic use of cannabidiol in chronic painful states.”

http://www.ncbi.nlm.nih.gov/pubmed/17157290

Oral anti-inflammatory activity of cannabidiol, a non-psychoactive constituent of cannabis, in acute carrageenan-induced inflammation in the rat paw.

Abstract

“Cannabidiol, the major non-psychoactive component of marijuana, has various pharmacological actions of clinical interest. It is reportedly effective as an anti-inflammatory and anti-arthritic in murine collagen-induced arthritis.

The present study examined the anti-inflammatory and anti-hyperalgesic effects of cannabidiol, administered orally (5-40 mg/kg) once a day for 3 days after the onset of acute inflammation induced by intraplantar injection of 0.1 ml carrageenan (1% w/v in saline) in the rat. At the end of the treatment prostaglandin E2 (PGE2) was assayed in the plasma, and cyclooxygenase (COX) activity, production of nitric oxide (NO; nitrite/nitrate content), and of other oxygen-derived free radicals (malondialdehyde) in inflamed paw tissues. All these markers were significantly increased following carrageenan. Thermal hyperalgesia, induced by carrageenan and assessed by the plantar test, lasted 7 h. Cannabidiol had a time- and dose-dependent anti-hyperalgesic effect after a single injection. Edema following carrageenan peaked at 3 h and lasted 72 h; a single dose of cannabidiol reduced edema in a dose-dependent fashion and subsequent daily doses caused further time- and dose-related reductions. There were decreases in PGE2 plasma levels, tissue COX activity, production of oxygen-derived free radicals, and NO after three doses of cannabidiol. The effect on NO seemed to depend on a lower expression of the endothelial isoform of NO synthase.

 In conclusion, oral cannabidiol has a beneficial action on two symptoms of established inflammation: edema and hyperalgesia.”

http://www.ncbi.nlm.nih.gov/pubmed/14963641

Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid?

Abstract

“Cannabidiol (CBD) is a phytocannabinoid with therapeutic properties for numerous disorders exerted through molecular mechanisms that are yet to be completely identified. CBD acts in some experimental models as an anti-inflammatory, anticonvulsant, antioxidant, antiemetic, anxiolytic and antipsychotic agent, and is therefore a potential medicine for the treatment of neuroinflammation, epilepsy, oxidative injury, vomiting and nausea, anxiety and schizophrenia, respectively. The neuroprotective potential of CBD, based on the combination of its anti-inflammatory and antioxidant properties, is of particular interest and is presently under intense preclinical research in numerous neurodegenerative disorders. In fact, CBD combined with Δ(9) -tetrahydrocannabinol is already under clinical evaluation in patients with Huntington’s disease to determine its potential as a disease-modifying therapy. The neuroprotective properties of CBD do not appear to be exerted by the activation of key targets within the endocannabinoid system for plant-derived cannabinoids like Δ(9) -tetrahydrocannabinol, i.e. CB(1) and CB(2) receptors, as CBD has negligible activity at these cannabinoid receptors, although certain activity at the CB(2) receptor has been documented in specific pathological conditions (i.e. damage of immature brain). Within the endocannabinoid system, CBD has been shown to have an inhibitory effect on the inactivation of endocannabinoids (i.e. inhibition of FAAH enzyme), thereby enhancing the action of these endogenous molecules on cannabinoid receptors, which is also noted in certain pathological conditions. CBD acts not only through the endocannabinoid system, but also causes direct or indirect activation of metabotropic receptors for serotonin or adenosine, and can target nuclear receptors of the PPAR family and also ion channels.”

http://www.ncbi.nlm.nih.gov/pubmed/22625422

Marijuana Compound Treats Schizophrenia with Few Side Effects:Clinical Trial

“A compound found in marijuana can treat schizophrenia as effectively as antipsychotic medications, with far fewer side effects, according to a preliminary clinical trial.

“Because it comes from marijuana, there are obvious political issues surrounding its use. Extracting it from the plant is also expensive. But the biggest barrier may be that CBD is a natural compound, and therefore can’t be patented the way new drugs are. That means that despite the possibility that it could outsell their current blockbuster antipsychotic drugs, pharmaceutical companies aren’t likely to develop it — a particularly striking fact when you consider that every major manufacturer of new generation antipsychotics in the U.S. has so far paid out hundreds of millions or billions of dollars in fines for mismarketing these drugs. Yet they still reaped huge profits.”

“For people with schizophrenia and their families, of course, it is likely to be infuriating that non-scientific issues like marijuana policy and patenting problems could stand in the way of a treatment that could potentially be so restorative. While it’s possible that these study results may not hold up or that researchers could discover problems related to long-term use of CBD,  it’s hard to imagine that they could be any worse than what patients already experience.”

Read more: http://healthland.time.com/2012/05/30/marijuana-compound-treats-schizophrenia-with-few-side-effects-clinical-trial/

Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders.

Abstract

“Cannabidiol (CBD) is a major phytocannabinoid present in the Cannabis sativa plant. It lacks the psychotomimetic and other psychotropic effects that the main plant compound Δ(9)-tetrahydrocannabinol (THC) being able, on the contrary, to antagonize these effects. This property, together with its safety profile, was an initial stimulus for the investigation of CBD pharmacological properties. It is now clear that CBD has therapeutic potential over a wide range of non-psychiatric and psychiatric disorders such as anxiety, depression and psychosis. Although the pharmacological effects of CBD in different biological systems have been extensively investigated by in vitro studies, the mechanisms responsible for its therapeutic potential are still not clear. Here, we review recent in vivo studies indicating that these mechanisms are not unitary but rather depend on the behavioural response being measured. Acute anxiolytic and antidepressant-like effects seem to rely mainly on facilitation of 5-HT1A-mediated neurotransmission in key brain areas related to defensive responses, including the dorsal periaqueductal grey, bed nucleus of the stria terminalis and medial prefrontal cortex. Other effects, such as anti-compulsive, increased extinction and impaired reconsolidation of aversive memories, and facilitation of adult hippocampal neurogenesis could depend on potentiation of anandamide-mediated neurotransmission. Finally, activation of TRPV1 channels may help us to explain the antipsychotic effect and the bell-shaped dose-response curves commonly observed with CBD. Considering its safety profile and wide range of therapeutic potential, however, further studies are needed to investigate the involvement of other possible mechanisms (e.g. inhibition of adenosine uptake, inverse agonism at CB2 receptor, CB1 receptor antagonism, GPR55 antagonism, PPARγ receptors agonism, intracellular (Ca(2+)) increase, etc.), on CBD behavioural effects.”

http://www.ncbi.nlm.nih.gov/pubmed/23108553

Nonpsychotropic Cannabinoid Receptors Regulate Microglial Cell Migration

“During neuroinflammation, activated microglial cells migrate toward dying neurons, where they exacerbate local cell damage. The signaling molecules that trigger microglial cell migration are poorly understood. In this paper, we show that pathological overstimulation of neurons by glutamate plus carbachol dramatically increases the production of the endocannabinoid 2-arachidonylglycerol (2-AG) but only slightly increases the production of anandamide and does not affect the production of two putative endocannabinoids, homo-γ-linolenylethanolamide and docosatetraenylethanolamide. We further show that pathological stimulation of microglial cells with ATP also increases the production of 2-AG without affecting the amount of other endocannabinoids. Using a Boyden chamber assay, we provide evidence that 2-AG triggers microglial cell migration. This effect of 2-AG occurs through CB2 and abnormal-cannabidiol-sensitive receptors, with subsequent activation of the extracellular signal-regulated kinase 1/2 signal transduction pathway. It is important to note that cannabinol and cannabidiol, two nonpsychotropic ingredients present in the marijuana plant, prevent the 2-AG-induced cell migration by antagonizing the CB2 and abnormal-cannabidiol-sensitive receptors, respectively. Finally, we show that microglial cells express CB2 receptors at the leading edge of lamellipodia, which is consistent with the involvement of microglial cells in cell migration. Our study identifies a cannabinoid signaling system regulating microglial cell migration. Because this signaling system is likely to be involved in recruiting microglial cells toward dying neurons, we propose that cannabinol and cannabidiol are promising nonpsychotropic therapeutics to prevent the recruitment of these cells at neuroinflammatory lesion sites.”

“Because marijuana produces remarkable beneficial effects, patients with multiple sclerosis, for example, commonly use this plant as a therapeutic agent; however, we still lack essential information on the mechanistic basis of these beneficial effects.”

“The marijuana plant, Cannabis sativa, contains >60 cannabinoid compounds, the best known being Δ9-tetrahydrocannabinol (THC), cannabinol (CBN), and cannabidiol (CBD) (for review, see. Cannabinoid compounds produce their biological effects by acting through at least three cannabinoid receptors (see Table1). These include the cloned cannabinoid CB1 receptors, which are expressed predominately in the CNS, the cloned cannabinoid CB2 receptors, which are expressed predominately by immune cells, and the abnormal-cannabidiol-sensitive receptors (hereafter referred to as abn-CBD receptors). The latter receptors have not been cloned yet, but they have been pinpointed pharmacologically in mice lacking CB1 and CB2 receptors and are also known as anandamide (AEA) receptors.”

“We also show that CBN and CBD, two nonpsychotropic bioactive compounds of marijuana, may antagonize the 2-AG-induced recruitment of microglial cells. This is in agreement with the fact that nabilone, a synthetic analog of THC, produces minimal palliative effects against multiple sclerosis symptoms, whereas smoking cannabis is reported to be beneficial. Therefore, our results suggest that bioactive cannabinoids present in the marijuana plant, such as CBN and CBD, are likely to underlie the increased efficacy of cannabis versus nabilone and therefore hold promise as nonpsychotropic therapeutics to treat neuroinflammation.”

http://www.jneurosci.org/content/23/4/1398.long

Addiction and the pharmacology of cannabis: implications for medicine and the law.

Abstract

“The topic of drug addiction or misuse of drugs has numerous far-reaching ramifications into areas such as neuroscience, medicine and therapeutics, toxicology, epidemiology, national and international economics and politics, and the law. The general principles of drug addiction are first summarised. A recurring and intrinsic problem is lack of adequate characterisation of the independent variable, namely the drug taken. Secondly, it is not feasible to allocate subjects randomly to treatments. Thirdly, the heterogeneity of different forms of addiction precludes facile generalisations. “A problem drug user is anyone who experiences social, psychological, physical, or legal problems related to intoxication, and/or regular excessive consumption, and/or dependence as a consequence of their use of drugs” (UK Advisory Council on Misuse of Drugs, 1982). Cannabis is a genus of flowering plants whose products are used as recreational drugs. Claims have been made for a range of therapeutic properties. Its two main active principles are delta9 – tetrahydrocannabinol (THC) and cannabidiol (CBD). These compounds have contrasting pharmacological properties. THC is suspected of causing psychotic phenomena, but CBD seems more sedative and may even be antipsychotic. The past use of cannabis, particularly the concentrations of THC and CBD, can be monitored with hair analysis. Recent studies involving the administration of THC and CBD to human subjects are reviewed. Suggestions are made for further research into the pharmacology and toxicology of CBD. Such data may also point to a more rational evidence-based approach to the legal control of cannabis preparations.”

http://www.ncbi.nlm.nih.gov/pubmed/19306615

A critical review of the antipsychotic effects of cannabidiol: 30 years of a translational investigation.

Abstract

“Δ 9-tetrahydrocannabinol (Δ 9-THC) is the main compound of the Cannabis Sativa responsible for most of the effects of the plant. Another major constituent is cannabidiol (CBD), formerly regarded to be devoid of pharmacological activity. However, laboratory rodents and human studies have shown that this cannabinoid is able to prevent psychotic-like symptoms induced by high doses of Δ 9- THC. Subsequent studies have demonstrated that CBD has antipsychotic effects as observed using animal models and in healthy volunteers. Thus, this article provides a critical review of the research evaluating antipsychotic potential of this cannabinoid. CBD appears to have pharmacological profile similar to that of atypical antipsychotic drugs as seem using behavioral and neurochemical techniques in animal models. Additionally, CBD prevented human experimental psychosis and was effective in open case reports and clinical trials in patients with schizophrenia with a remarkable safety profile. Moreover, fMRI results strongly suggest that the antipsychotic effects of CBD in relation to the psychotomimetic effects of Δ 9-THC involve the striatum and temporal cortex that have been traditionally associated with psychosis. Although the mechanisms of the antipsychotic properties are still not fully understood, we propose a hypothesis that could have a heuristic value to inspire new studies. These results support the idea that CBD may be a future therapeutic option in psychosis, in general and in schizophrenia, in particular.”

http://www.ncbi.nlm.nih.gov/pubmed/22716160

Safety and side effects of cannabidiol, a Cannabis sativa constituent.

“Cannabidiol (CBD), a major nonpsychotropic constituent of Cannabis, has multiple pharmacological actions, including anxiolytic, antipsychotic, antiemetic and anti-inflammatory properties. However, little is known about its safety and side effect profile in animals and humans. This review describes in vivo and in vitro reports of CBD administration across a wide range of concentrations, based on reports retrieved from Web of Science, Scielo and Medline. The keywords searched were “cannabinoids”, “cannabidiol” and “side effects”. Several studies suggest that CBD is non-toxic in non-transformed cells and does not induce changes on food intake, does not induce catalepsy, does not affect physiological parameters (heart rate, blood pressure and body temperature), does not affect gastrointestinal transit and does not alter psychomotor or psychological functions. Also, chronic use and high doses up to 1,500 mg/day of CBD are reportedly well tolerated in humans. Conversely, some studies reported that this cannabinoid can induce some side effects, including inhibition of hepatic drug metabolism, alterations of in vitro cell viability, decreased fertilization capacity, and decreased activities of p-glycoprotein and other drug transporters. Based on recent advances in cannabinoid administration in humans, controlled CBD may be safe in humans and animals. However, further studies are needed to clarify these reported in vitro and in vivo side effects.”