What is THC?

“THC, or tetrahydrocannabinol, is the chemical responsible for most of marijuana’s psychological effects. It acts much like the cannabinoid chemicals made naturally by the body, according to the National Institute on Drug Abuse (NIDA).

Cannabinoid receptors are concentrated in certain areas of the brain associated with thinking, memory, pleasure, coordination and time perception. THC attaches to these receptors and activates them and affects a person’s memory, pleasure, movements, thinking, concentration, coordination, and sensory and time perception, according to NIDA.

THC is one of many compounds found in the resin secreted by glands of the marijuana plant. More of these glands are found around the reproductive organs of the plant than on any other area of the plant. Other compounds unique to marijuana, called cannabinoids, are present in this resin.

One cannabinoid, CBD is nonpsychoactive, according to the National Center for Biotechnology Information, and actually blocks the high associated with THC.”

http://www.livescience.com/24553-what-is-thc.html

http://www.thctotalhealthcare.com/category/thc-delta-9-tetrahydrocannabinol/

Target regulation of PI3K/Akt/mTOR pathway by cannabidiol in treatment of experimental multiple sclerosis.

Image result for Fitoterapia journal

“This study was aimed to investigate whether treatment with purified cannabidiol (CBD) may counteract the development of experimental multiple sclerosis (MS), by targeting the PI3K/Akt/mTOR pathway.

Our results showed a clear downregulation of the PI3K/Akt/mTOR pathway following EAE induction. CBD treatment was able to restore it, increasing significantly the phosphorylation of PI3K, Akt and mTOR. Also, an increased level of BNDF in CBD-treated mice seems to be involved in the activation of PI3K/Akt/mTOR pathway.

In addition, our data demonstrated that therapeutic efficacy of CBD treatment is due to reduction of pro-inflammatory cytokines, like IFN-γ and IL-17 together with an up-regulation of PPARγ. Finally, CBD was found to promote neuronal survival by inhibiting JNK and p38 MAP kinases.

These results provide an interesting discovery about the regulation of the PI3K/Akt/mTOR pathway by cannabidiol administration, that could be a new potential therapeutic target for MS management.”

https://www.ncbi.nlm.nih.gov/pubmed/27890794

Cannabidiol reduces neuroinflammation and promotes neuroplasticity and functional recovery after brain ischemia.

Image result for Prog Neuropsychopharmacol Biol Psychiatry.

“This study investigated the effects of cannabidiol (CBD), a non-psychotomimetic phytochemical present in Cannabis sativa, on the cognitive and emotional impairments induced by bilateral common carotid artery occlusion (BCCAO) in mice.

Using a multi-tiered behavioral testing battery during 21days, we found that BCCAO mice exhibited long-lasting functional deficits reflected by increase in anxiety-like behavior (day 9), memory impairments (days 12-18) and despair-like behavior (day 21).

Short-term CBD 10mg/kg treatment prevented the cognitive and emotional impairments, attenuated hippocampal neurodegeneration and white matter (WM) injury, and reduced glial response that were induced by BCCAO.

In addition, ischemic mice treated with CBD exhibited an increase in the hippocampal brain derived neurotrophic factor (BDNF) protein levels.

CBD also stimulated neurogenesis and promoted dendritic restructuring in the hippocampus of BCCAO animals.

Collectively, the present results demonstrate that short-term CBD treatment results in global functional recovery in ischemic mice and impacts multiple and distinct targets involved in the pathophysiology of brain ischemic injury.”

https://www.ncbi.nlm.nih.gov/pubmed/27889412

A systematic review of the effect of cannabidiol on cognitive function: Relevance to schizophrenia.

Image result for neuroscience & biobehavioral reviews

“Cognitive impairment is a core symptom domain of schizophrenia, neurological disorders and substance abuse. It is characterised by deficits in learning, memory, attention and executive functioning and can severely impact daily living.

Antipsychotic drugs prescribed to treat schizophrenia provide limited cognitive benefits and novel therapeutic targets are required. Cannabidiol (CBD), a component of the cannabis plant, has anti-inflammatory and antipsychotic-like properties; however, its ability to improve cognitive impairment has not been thoroughly explored. The aim of this systematic review was to evaluate preclinical and clinical literature on the effects of CBD in cognitive domains relevant to schizophrenia.

CBD improves cognition in multiple preclinical models of cognitive impairment, including models of neuropsychiatric (schizophrenia), neurodegenerative (Alzheimer’s disease), neuro-inflammatory (meningitis, sepsis and cerebral malaria) and neurological disorders (hepatic encephalopathy and brain ischemia). To-date, there is one clinical investigation into the effects of CBD on cognition in schizophrenia patients, with negative results for the stroop test. CBD attenuates Δ9-THC-induced cognitive deficits.

 

The efficacy of CBD to improve cognition in schizophrenia cannot be elucidated due to lack of clinical evidence; however, given the ability of CBD to restore cognition in multiple studies of impairment, further investigation into its efficacy in schizophrenia is warranted. Potential mechanisms underlying the efficacy of CBD to improve cognition are discussed.”

https://www.ncbi.nlm.nih.gov/pubmed/27884751

Cannabidiol as a Potential New Type of an Antipsychotic. A Critical Review of the Evidence

Logo of frontpharmacol

“There is urgent need for the development of mechanistically different and less side-effect prone antipsychotic compounds.

The endocannabinoid system has been suggested to represent a potential new target in this indication.

Although, results from animal studies are inconsistent to a certain extent and seem to depend on behavioral paradigms, treatment duration and experimental conditions applied, cannabidiol has shown antipsychotic properties in both rodents and rhesus monkeys.

After some individual treatment attempts, the first randomized, double-blind controlled clinical trial demonstrated that in acute schizophrenia cannabidiol exerts antipsychotic properties comparable to the antipsychotic drug amisulpride while being accompanied by a superior, placebo-like side effect profile.

As the clinical improvement by cannabidiol was significantly associated with elevated anandamide levels, it appears likely that its antipsychotic action is based on mechanisms associated with increased anandamide concentrations.

The antipsychotic potential of cannabidiol has been investigated in various behavioral paradigms and different animal models of aspects of schizophrenia.

Although the results were partially inconsistent, they indicate that cannabidiol treatment ameliorates impairments of PPI, social interaction behavior and cognition in rodents and rhesus monkeys.

In addition, individual treatment attempts as well as one randomized, double-blind clinical study, demonstrated the antipsychotic potential of cannabidiol and its superior side effect profile compared to conventional antipsychotics. In addition, a recently conducted clinical trial investigating cannabidiol as an add-on medication showed promising results, although these have not yet been published in a peer reviewed process.

Obviously more clinical trials are needed to substantiate the current findings, and in particular to investigate long-term efficacy and safety in larger cohorts.

However, cannabidiol seems to represent a mechanistically different and less side-effect prone antipsychotic compound for the treatment of schizophrenia, even though the underlying pharmacological mechanisms are still under debate.

Nevertheless, the association between increased anandamide levels and reduced psychotic symptoms in schizophrenic patients treated with cannabidiol, points to a potentially new antipsychotic mechanism of action involving anandamide.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5099166/

Cannabidiol Mellows Out Resurgent Sodium Current

“Cannabidiol has received abundant media attention as a potential therapy for intractable epilepsy, based mainly on anecdotal evidence.

These findings suggest that cannabidiol could be exerting its anticonvulsant effects, at least in part, through its actions on voltage-gated sodium channels, and resurgent current may be a promising therapeutic target for the treatment of epilepsy syndromes.”

http://www.epilepsycurrents.org/doi/full/10.5698/1535-7511-16.6.399

Anti-excitotoxic effects of cannabidiol are partly mediated by enhancement of NCX2 and NCX3 expression in animal model of cerebral ischemia.

Image result for Eur J Pharmacol.

“Excitotoxicity and imbalance of sodium and calcium homeostasis trigger pathophysiologic processes in cerebral ischemia which can accelerate neuronal death.

Neuroprotective role of cannabidiol (CBD), one of the main non-psychoactive phytocannabinoids of the cannabis plant, has attracted attention of many researchers in the neurodegenerative diseases studies.

The present investigation was designed to determine whether cannabidiol can alleviate the severity of ischemic damages and if it is able to exert its anti-excitotoxic effects through sodium and calcium regulation.

The present results indicate that administration of cannabidiol (100 and 200 ng/rat) in the MCAO-induced cerebral ischemia caused a remarkable reduction in neurological deficit, infarction, brain edema, and BBB permeability in comparison with the vehicle group. Up-regulation of NCX2 and NCX3 in cannabidiol-received groups was also observed.

These findings support the view that the reduction of ischemic injuries elicited by cannabidiol can be at least partly due to the enhancement of NCX protein expression and its cerebro-protective role in those cerebral territories supplied by MCA.”

https://www.ncbi.nlm.nih.gov/pubmed/27856160

Tetrahydrocannabinol:Cannabidiol Oromucosal Spray for Multiple Sclerosis-Related Resistant Spasticity in Daily Practice.

Image result for European Neurology

“Tetrahydrocannabinol:cannabidiol (THC:CBD) oromucosal spray (Sativex®) is an add-on therapy for moderate-to-severe multiple sclerosis (MS)-related drug-resistant spasticity (MSS).

In everyday clinical practice, THC:CBD oromucosal spray provided symptomatic relief of MSS and related troublesome symptoms.”

https://www.ncbi.nlm.nih.gov/pubmed/27732980

Quantitative analyses of synergistic responses between cannabidiol and DNA-damaging agents on the proliferation and viability of glioblastoma and neural progenitor cells in culture.

Image result for journal of pharmacology and experimental therapeutics

“Evidence suggests that the non-psychotropic cannabis-derived compound, cannabidiol (CBD), has anti-neoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM).

DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM.

Here we studied the anti-proliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures.

This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system (CNS) toxicity.

We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells.

Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells.

Co-treatment regiments combining CBD and DNA-damaging agents produced synergistic anti-proliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs.

Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells.

Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little-to-no therapeutic window when considering NPCs.”

https://www.ncbi.nlm.nih.gov/pubmed/27821713

“Definition of antineoplastic: inhibiting or preventing the growth and spread of tumors or malignant cells”  http://www.merriam-webster.com/dictionary/antineoplastic

Targeting the Endocannabinoid System in Psychiatric Illness.

Image result for J Clin Psychopharmacol

“Prevalence of psychiatric disorders continues to rise globally, yet remission rates and patient outcome remain less than ideal. As a result, novel treatment approaches for these disorders are necessary to decrease societal economic burden, as well as increase individual functioning.

The recent discovery of the endocannabinoid system has provided an outlet for further research into its role in psychiatric disorders, because efficacy of targeted treatments have been demonstrated in medical illnesses, including cancers, neuropathic pain, and multiple sclerosis.

The present review will investigate the role of the endocannabinoid system in psychiatric disorders, specifically schizophrenia, depressive, anxiety, and posttraumatic stress disorders, as well as attention-deficit hyperactivity disorder.

Controversy remains in prescribing medicinal cannabinoid treatments due to the fear of adverse effects. However, one must consider all potential limitations when determining the safety and tolerability of cannabinoid products, specifically cannabinoid content (ie, Δ-tetrahydrocannabinol vs cannabidiol) as well as study design.

The potential efficacy of cannabinoid treatments in the psychiatric population is an emerging topic of interest that provides potential value going forward in medicine.”