Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist.

“Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease.

Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury.

We have previously reported the receptor affinity of 3′,5′-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury.

Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940.

The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined.

Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury.”

http://www.ncbi.nlm.nih.gov/pubmed/26196013

Bone cell-autonomous contribution of type 2 cannabinoid receptor to breast cancer induced osteolysis.

“The cannabinoid type 2 receptor (CB2) has previously been implicated as a regulator of tumour growth, bone remodelling and bone pain.

However, very little is known about the role of the skeletal CB2 receptor in the regulation of osteoblasts and osteoclasts changes associated with breast cancer. Here, we found that the CB2 selective agonists HU308 and JWH133 reduced the viability of a variety of parental and bone-tropic human and mouse breast cancer cells at high micro-molar concentrations…

When combined with published work, these findings suggest that breast cancer and bone cells exhibit differential responses to treatment with CB2 ligands, depending upon cell type and concentration used.

We therefore conclude that both, CB2 selective activation and antagonism have potential efficacy in cancer associated bone disease but further studies are warranted and ongoing.”

The endocannabinoid, endovanilloid and nitrergic systems could interact in the rat dorsolateral periaqueductal gray matter to control anxiety-like behaviors.

“Cannabinoid compounds usually produce biphasic effects in the modulation of emotional responses.

Low doses of the endocannabinoid anandamide (AEA) injected into the dorsolateral periaqueductal gray matter (dlPAG) induce anxiolytic-like effects via CB1 receptors activation.

However, at higher doses the drug loses this effect, in part by activating Transient Receptor Potential Vanilloid Type 1 (TRPV1).

Activation of these latter receptors could induce the formation of nitric oxide (NO). Thus, the present study tested the hypothesis that at high doses AEA loses it anxiolytic-like effect by facilitating, probably via TRPV1 receptor activation, the formation of NO.

…these results support the hypothesis that intra-dlPAG injections of high doses of AEA lose their anxiolytic effects by favoring TRPV1 receptors activity and consequent NO formation, which in turn could facilitate defensive responses.”

The effects of dronabinol during detoxification and the initiation of treatment with extended release naltrexone.

“Evidence suggests that the cannabinoid system is involved in the maintenance of opioid dependence. We examined whether dronabinol, a cannabinoid receptor type 1 partial agonist, reduces opioid withdrawal and increases retention in treatment with extended release naltrexone (XR-naltrexone).

CONCLUSION:

Dronabinol reduced the severity of opiate withdrawal during acute detoxification but had no effect on rates of XR-naltrexone treatment induction and retention. Participants who elected to smoke marijuana during the trial were more likely to complete treatment regardless of treatment group assignment.”

http://www.ncbi.nlm.nih.gov/pubmed/26187456

Time-Dependent Protection of CB2 Receptor Agonist in Stroke.

“Recent studies have indicated that type 2 cannabinoid receptor (CB2R) agonists reduce neurodegeneration after brain injury through anti-inflammatory activity.

The purpose of this study was to examine the time-dependent interaction of CB2R and inflammation in stroke brain.

In conclusion, our data support a time-dependent neuroprotection of CB2 agonist in an animal model of stroke.

Delayed post- treatment with PPAR-γ agonist induced behavioral recovery and microglial suppression; early treatment with CB2R agonist suppressed neurodegeneration in stroke animals.”

http://www.ncbi.nlm.nih.gov/pubmed/26186541

http://www.thctotalhealthcare.com/category/stroke-2/

Interaction between Cannabinoid Compounds and Capsazepine in Protection against Acute Pentylenetetrazole-induced Seizure in Mice.

“The pharmacological interaction between cannabinoidergic system and vanilloid type 1 (TRPV1) channels has been investigated in various conditions such as pain and anxiety.

In some brain structure including hippocampus, CB1 and TRPV1 receptors coexist and their activation produces opposite effect on excitability of neurons.

In this study, we tested the hypothesis that TRPV1 channel is involved in the modulation of cannabinoid effects on pentylenetetrazole (PTZ)-induced seizure threshold…

The anticonvulsant actions of both capsazepine and ACEA were attenuated after co-administration of these compounds. Moreover, the anticonvulsant action of capsazepine was attenuated after co-administration with VDM11.

The results suggest an interaction between cannabinoidergic system and TRPV1 receptors in protection against acute PTZ-induced seizure in mice.”

http://www.ncbi.nlm.nih.gov/pubmed/26185513

Cannabis and Exercise Science: A Commentary on Existing Studies and Suggestions for Future Directions.

“Policies regarding cannabis use are rapidly changing, yet public officials have limited access to scientific information that might inform the creation of these policies.

One important area in which to begin investigations is the link between recreational cannabis use and health, specifically exercise.

There are common anecdotal reports that cannabis decreases motivation, including motivation to exercise. On the other hand, there are also anecdotal reports that cannabis is used prior to athletic activity.

In fact, the World Anti-Doping Agency includes cannabis as a prohibited substance in sport, partly because it is believed that it may enhance sports performance.

Given recent political, cultural, and legal trends, and the growing acceptance of recreational cannabis use, it is important to develop a more nuanced understanding of the relationship between cannabis and exercise, specifically the potential effects of use on exercise performance, motivation, and recovery.”

http://www.ncbi.nlm.nih.gov/pubmed/26178329

Phytocannabinoids for Cancer Therapeutics: Recent Updates and Future Prospects.

“Phytocannabinoids (pCBs) are lipid-soluble phytochemicals present in the plant, Cannabis sativa L. and non-cannabis plants which have a long history in traditional and recreational medicine.

The plant and constituents were central in the discovery of the endocannabinoid system, the most new target for drug discovery.

The endocannabinoid system includes two G protein-coupled receptors; the cannabinoid receptors-1 and -2 (CB1 and CB2) for marijuana’s psychoactive principle ∆(9)-tetrahydrocannabinol (∆9-THC), their endogenous small lipid ligands; namely anandamide (AEA) and 2-arachidonoylglycerol (2-AG), also known as endocannabinoids and the proteins for endocannabinoid biosynthesis and degradation such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL).

The endocannabinoid system has been suggested as a pro-homeostatic and pleiotropic signaling system activated in a time- and tissue-specific way during pathological conditions including cancer.

Targeting the CB1 receptors become a concern because of adverse psychotropic reactions. Hence, targeting the CB2 receptors or the endocannabinoid metabolizing enzyme by phytocannabinoids obtained from non-cannabis plant lacking psychotropic adverse reactions has garnered interest in drug discovery.

These pCBs derived from plants beyond cannabis appear safe and effective with a wider access and availability.

In recent years, several pCBs derived other than non-cannabinoid plants have been reported to bind to and functionally interact with cannabinoid receptors and appear promising candidate for drug development in cancer therapeutics.

Several of them also target the endocannabinoid metabolizing enzymes that control endocannabinoid levels. In this article, we summarize, critically discuss the updates and future prospects of the pCBs as novel and promising candidates for cancer therapeutics.”

http://www.ncbi.nlm.nih.gov/pubmed/26179998

http://www.thctotalhealthcare.com/category/cancer/

Endocannabinoid 2-arachidonylglycerol protects primary cultured neurons against LPS-induced impairments in rat caudate nucleus.

“Inflammation plays a pivotal role in the pathogenesis of many diseases in the central nervous system.

Caudate nucleus (CN), the largest nucleus in the brain, is also implicated in many neurological disorders.

2-Arachidonoylglycerol (2-AG), the most abundant endogenous cannabinoid and the true natural ligand for CB1 receptors, has been shown to exhibit neuroprotective effects through its anti-inflammatory action from proinflammatory stimuli in hippocampus.

In the present study, we discovered that 2-AG significantly protects CN neurons in culture against lipopolysaccharide (LPS)-induced inflammatory response.

Our study suggests the therapeutic potential of 2-AG for the treatment of some inflammation-induced neurological disorders and pain.”

http://www.ncbi.nlm.nih.gov/pubmed/24510751

Endocannabinoid 2-arachidonylglycerol protects primary cultured neurons against homocysteine-induced impairments in rat caudate nucleus through CB1 receptor.

“Homocysteine (Hcy) is a high risk factor for Alzheimer’s disease (AD). Caudate nucleus (CN), the major component of basal ganglia in the brain, is also involved in many neurological disorders.

2-Arachidonoylglycerol (2-AG), the true natural ligand for cannabinoid type-1 (CB1) receptors and the most abundant endogenous cannabinoid, has been shown to exhibit neuroprotective effects through its anti-inflammatory action from proinflammatory stimuli in the hippocampus and CN.

In the present work, we explored that 2-AG significantly protects CN neurons in culture against Hcy-induced response.

2-AG is capable of inhibiting elevation of Hcy-induced cyclooxygenase-2 expression associated with nuclear factor-kappaB/p38MAPK/ERK1/2 signaling pathway through CB1 receptors-dependent way in primary cultured CN neurons.

Our study reveals the therapeutic potential for 2-AG for the treatment of neurodegenerative diseases, such as AD.”

http://www.ncbi.nlm.nih.gov/pubmed/25007951