Fatty Acid Binding Protein-1 (FABP1) and the Human FABP1 T94A Variant: Roles in the Endocannabinoid System and Dyslipidemias.

“The first discovered member of the mammalian FABP family, liver fatty acid binding protein (FABP1, L-FABP), occurs at high cytosolic concentration in liver, intestine, and in the case of humans also in kidney.

While the rat FABP1 is well studied, the extent these findings translate to human FABP1 is not clear-especially in view of recent studies showing that endocannabinoids and cannabinoids represent novel rat FABP1 ligands and FABP1 gene ablation impacts the hepatic endocannabinoid system, known to be involved in non-alcoholic fatty liver (NAFLD) development.

Although not detectable in brain, FABP1 ablation nevertheless also impacts brain endocannabinoids. Despite overall tertiary structure similarity, human FABP1 differs significantly from rat FABP1 in secondary structure, much larger ligand binding cavity, and affinities/specificities for some ligands. Moreover, while both mouse and human FABP1 mediate ligand induction of peroxisome proliferator activated receptor-α (PPARα), they differ markedly in pattern of genes induced.

This is critically important because a highly prevalent human single nucleotide polymorphism (SNP) (26-38 % minor allele frequency and 8.3 ± 1.9 % homozygous) results in a FABP1 T94A substitution that further accentuates these species differences. The human FABP1 T94A variant is associated with altered body mass index (BMI), clinical dyslipidemias (elevated plasma triglycerides and LDL cholesterol), atherothrombotic cerebral infarction, and non-alcoholic fatty liver disease (NAFLD).

Resolving human FABP1 and the T94A variant’s impact on the endocannabinoid and cannabinoid system is an exciting challenge due to the importance of this system in hepatic lipid accumulation as well as behavior, pain, inflammation, and satiety.”

http://www.ncbi.nlm.nih.gov/pubmed/27117865

The Endocannabinoid System: An Osteopathic Perspective

AOA logo

“A person is the product of dynamic interaction between body, mind, and spirit—This holistic principle is exemplified by cannabinoid receptors, which span the field of psychoneuroimmunology. Taken together, CB1, CB2, and their endocannabinoid ligands represent a microcosm of mind-body medicine. The primary purpose of the current article is to review the expanding endocannabinoid literature beginning with exogenous compounds—Cannabis and plant cannabinoids—and then shift to the endogenous system, highlighting embryology and development, neuroprotection, autonomics and immunity, inflammation, apoptosis, hunger and feeding, and nociception and pain.” http://jaoa.org/article.aspx?articleid=2093607

Modulation of cellular redox homeostasis by the endocannabinoid system

“The endocannabinoid system (ECS) and reactive oxygen species (ROS) constitute two key cellular signalling systems that participate in the modulation of diverse cellular functions.

Importantly, growing evidence suggests that cross-talk between these two prominent signalling systems acts to modulate functionality of the ECS as well as redox homeostasis in different cell types…

To conclude, there is growing appreciation that the ECS may play an important role in the regulation of cellular redox homeostasis…

Indeed, the studies highlighted in this review show that ECS function can impact upon free radical production in a number of different ways.

Crucially, given the importance of redox status in the development of numerous pathologies, these findings identify ECS components as potential therapeutic targets for the treatment of oxidative stress-related neurological, cardiovascular and metabolic disorders.”

http://rsob.royalsocietypublishing.org/content/6/4/150276

Advances towards the Discovery of GPR55 Ligands.

“The G-protein-coupled receptor 55 (GPR55) was identified in 1999.

It was proposed as a novel member of the endocannabinoid system due to the fact that some endogenous, plant-derived and synthetic cannabinoid ligands act on GPR55. However, the complexity of the cellular downstream signaling pathways related to GPR55 activation delayed the discovery of selective GPR55 ligands.

It was only a few years ago that the high throughput screening of libraries of pharmaceutical companies and governmental organizations allowed to identify selective GPR55 agonists and antagonists. Since then, several GPR55 modulator scaffolds have been reported.

The relevance of GPR55 has been explored in diverse physiological and pathological processes revealing its role in inflammation, neuropathic pain, bone physiology, diabetes and cancer.

Considering GPR55 as a new promising therapeutic target, there is a clear need for new selective and potent GPR55 modulators. This review will address a current structural update of GPR55 ligands.”

http://www.ncbi.nlm.nih.gov/pubmed/27109575

Endocannabinoids signaling: Molecular mechanisms of liver regulation and diseases.

“The endocannabinoid system (ECS) includes endocannabinoids (eCBs), cannabinoid (CB) receptors and the enzymes that are responsible for endocannabinoid production and metabolism. The ECS has been reported to be present in both brain and peripheral tissues.

Recent studies have indicated that eCBs and their receptors are involved in the development of various liver diseases. They were found to be altered in response to many danger factors.

It is generally accepted that eCB may exert a protective action via CB2 receptors in different liver diseases. However, eCBs have also been demonstrated to have pathogenic role via their CB1 receptors.

Although the therapeutic potential of CB1 receptor blockade in liver diseases is limited by its neuropsychiatric side effects, many studies have been conducted to search for novel, peripherally restricted CB1 antagonists or CB2 agonists, which may minimize their neuropsychiatric side effects in clinical use.

This review summarizes the current understanding of the ECS in liver diseases and provides evidence for the potential to develop new therapeutic strategies for the treatment of these liver diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27100518

Anandamide and its metabolites: what are their roles in the kidney?

 “Anandamide (AEA) is the N-acyl ethanolamide of arachidonic acid, an agonist of cannabinoid and non-cannabinoid receptors in the body. The kidneys are enriched in AEA and in enzymes that metabolize AEA, but the roles of AEA and its metabolites in the kidney remain poorly understood.

This system likely is involved in the regulation of renal blood flow and hemodynamics and of tubular sodium and fluid reabsorption. It may act as a neuromodulator of the renal sympathetic nervous system. AEA and its cyclooxygenase-2 metabolites, the prostamides, in the renal medulla may represent a unique antihypertensive system involved in the long-term control of blood pressure. AEA and its metabolites are also implicated as modulators of inflammation and mediators of signaling in inflammation.

AEA and its metabolites may be influential in chronic kidney disease states associated with inflammation and cardiovascular diseases associated with hyperhomocysteinemia. The current knowledge of the roles of AEA and its derivatives highlights the need for further research to define and potentially exploit the role of this endocannabinoid system in the kidney.”

http://www.ncbi.nlm.nih.gov/pubmed/27100705

ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27086601

The multiplicity of action of cannabinoids: implications for treating neurodegeneration.

“The cannabinoid (CB) system is widespread in the central nervous system and is crucial for controlling a range of neurophysiological processes such as pain, appetite, and cognition. The endogenous CB molecules, anandamide, and 2-arachidonoyl glycerol, interact with the G-protein coupled CB receptors, CB(1) and CB(2).

These receptors are also targets for the phytocannabinoids isolated from the cannabis plant and synthetic CB receptor ligands.

The CB system is emerging as a key regulator of neuronal cell fate and is capable of conferring neuroprotection by the direct engagement of prosurvival pathways and the control of neurogenesis.

Many neurological conditions feature a neurodegenerative component that is associated with excitotoxicity, oxidative stress, and neuroinflammation, and certain CB molecules have been demonstrated to inhibit these events to halt the progression of neurodegeneration.

Such properties are attractive in the development of new strategies to treat neurodegenerative conditions of diverse etiology, such as Alzheimer’s disease, multiple sclerosis, and cerebral ischemia.

This article will discuss the experimental and clinical evidence supporting a potential role for CB-based therapies in the treatment of certain neurological diseases that feature a neurodegenerative component.”

http://www.ncbi.nlm.nih.gov/pubmed/20875047

Toll-like receptor signalling as a cannabinoid target in Multiple Sclerosis.

“Toll-like receptors (TLRs) are the sensors of pathogen-associated molecules that trigger tailored innate immune intracellular signalling responses to initiate innate immune reactions.

Data from the experimental autoimmune encephalomyelitis (EAE) model indicates that TLR signalling machinery is a pivotal player in the development of murine EAE. To compound this, data from human studies indicate that complex interplay exists between TLR signalling and Multiple Sclerosis (MS) pathogenesis.

Cannabis-based therapies are in clinical development for the management of a variety of medical conditions, including MS. In particular Sativex®, a combination of plant-derived cannabinoids, is an oromucosal spray with efficacy in MS patients, particularly those with neuropathic pain and spasticity.

Despite this, the precise cellular and molecular mechanisms of action of Sativex® in MS patients remains unclear. This review will highlight evidence that novel interplay exists between the TLR and cannabinoid systems, both centrally and peripherally, with relevance to the pathogenesis of MS.”

http://www.ncbi.nlm.nih.gov/pubmed/27079840

Production of endocannabinoids by activated T cells and B cells modulates inflammation associated with delayed type hypersensitivity.

“Endocannabinoids are endogenous ligands for the cannabinoid (CB) receptors which include anandamide (AEA) and (2-AG). 2-AG has been linked to inflammation due to its elevated expression in animal models of autoimmunity and hypersensitivity.

However, administration of exogenous 2-AG has been shown to suppress inflammation making its precise role unclear. In the current study, we investigated the role of 2-AG following immunization of C57BL/6 (BL6) mice with methylated BSA (mBSA) antigen, which triggers both delayed type hypersensitivity (DTH) and antibody response.

Together, these data show for the first time that activated T and B cells produce 2-AG, which plays a negative regulatory role to decrease DTH via inhibition of T-cell activation and proliferation.

Moreover, these findings suggest that exogenous 2-AG treatment can be used therapeutically in Th1- or Th17-driven disease.”  http://www.ncbi.nlm.nih.gov/pubmed/27064137

“∆9-Tetrahydrocannabinol (THC) is one of the major bioactive cannabinoids derived from the Cannabis sativa plant and is known for its anti-inflammatory properties. Delayed-type hypersensitivity (DTH) is driven by proinflammatory T helper cells including the classic inflammatory Th1 lineage as well as the more recently discovered Th17 lineage. In the current study, we investigated whether THC can alter the induction of Th1/Th17 cells involved in mBSA-induced DTH response… In summary, the current study suggests that THC treatment during DTH response can simultaneously inhibit Th1/Th17 activation via regulation of microRNA (miRNA) expression.• THC treatment inhibits simultaneous Th1/Th17 driven inflammation. • THC treatment corrects DTH-mediated microRNA dysregulation. • THC treatment regulates proinflammatory cytokines and transcription factors.” http://www.ncbi.nlm.nih.gov/pubmed/27038180