Human serum albumin: A modulator of cannabinoid drugs.

International Union of Biochemistry and Molecular Biology

“The endocannabinoid system is a unique neuromodulatory system that affects a wide range of biological processes and maintains the homeostasis in all mammal body systems. In recent years, several pharmacological tools to target endocannabinoid neurotransmission have been developed, including direct and indirect cannabinoid agonists and cannabinoid antagonists. Due to their hydrophobic nature, cannabinoid agonists and antagonists need to bind specific transporters to allow their distribution in body fluids. Human serum albumin (HSA), the most abundant plasma protein, is a key determinant of drug pharmacokinetics. As HSA binds both the endocannabinoid anandamide and the active ingredient of Cannabis sativa, Δ-9-tetrahydrocannabinol, we hypothesize that HSA can be the most important carrier of cannabinoid drugs. In silico docking observations strongly indicate that HSA avidly binds the indirect cannabinoid agonists URB597, AM5206, JZL184, JZL195, and AM404, the direct cannabinoid agonists WIN55,212-2 and CP55,940, and the prototypical cannabinoid antagonist/inverse agonist SR141716. Values of the free energy for cannabinoid drugs binding to HSA range between -5.4 kcal mol-1 and -10.9 kcal mol-1 . Accounting for the HSA concentration in vivo (∼ 7.5 × 10-4 M), values of the free energy here determined suggest that the formation of the HSA:cannabinoid drug complexes may occur in vivo. Therefore, HSA appears to be an important determinant for cannabinoid efficacy and may guide the choice of the drug dose regimen to optimize drug efficacy and to avoid drug-related toxicity. ”

https://www.ncbi.nlm.nih.gov/pubmed/28976704

http://onlinelibrary.wiley.com/doi/10.1002/iub.1682/abstract

Is cannabis an effective treatment for joint pain?

Image result for Clin Exp Rheumatol.

“Cannabis has been used to treat pain for thousands of years.

However, since the early part of the 20th century, laws restricting cannabis use have limited its evaluation using modern scientific criteria. Over the last decade, the situation has started to change because of the increased availability of cannabis in the United States for either medical or recreational purposes, making it important to provide the public with accurate information as to the effectiveness of the drug for joint pain among other indications.

The major psychotropic component of cannabis is Δ9-tetrahydrocannabinol (THC), one of some 120 naturally occurring phytocannabinoids. Cannabidiol (CBD) is another molecule found in herbal cannabis in large amounts. Although CBD does not produce psychotropic effects, it has been shown to produce a variety of pharmacological effects. Hence, the overall effects of herbal cannabis represent the collective activity of THC, CBD and a number of minor components.

The action of THC is mediated by two major G-protein coupled receptors, cannabinoid receptor type 1 (CB1) and CB2, and recent work has suggested that other targets may also exist. Arachidonic acid derived endocannabinoids are the normal physiological activators of the two cannabinoid receptors.

Natural phytocannabinoids and synthetic derivatives have produced clear activity in a variety of models of joint pain in animals. These effects are the result of both inhibition of pain pathway signalling (mostly CB1) and anti-inflammatory effects (mostly CB2). There are also numerous anecdotal reports of the effectiveness of smoking cannabis for joint pain.

Indeed, it is the largest medical request for the use of the drug. However, these reports generally do not extend to regulated clinical trials for rheumatic diseases. Nevertheless, the preclinical and human data that do exist indicate that the use of cannabis should be taken seriously as a potential treatment of joint pain.”

https://www.ncbi.nlm.nih.gov/pubmed/28967368

Cannabinoid CB1 Discrimination: Effects of Endocannabinoids and Catabolic Enzyme Inhibitors.

“An improved understanding of the endocannabinoid system has provided new avenues of drug discovery and development toward the management of pain and other behavioral maladies. Exogenous cannabinoid type-1 (CB1) receptor agonists such as Δ9-tetrahydrocannabinol are increasingly utilized for their medicinal actions; however, their utility is constrained by concern regarding abuse-related subjective effects. This has led to growing interest in the clinical benefit of indirectly enhancing the activity of the highly labile endocannabinoids N-arachidonoylethanolamine (anandamide; AEA) and/or 2-arachidonoylglycerol (2-AG) via catabolic enzyme inhibition. The present studies were conducted to determine whether such actions can lead to CB1 agonist-like subjective effects, as reflected in the presence or absence of CB1-related discriminative-stimulus effects in laboratory subjects. Squirrel monkeys (n=8) that discriminated the CB1 full agonist AM4054 (0.01 mg/kg) from vehicle were used to study, first, inhibitors of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MGL) alone or in combination [FAAH (URB597, AM4303); MGL (AM4301); FAAH/MGL (AM4302)] and, second, the ability of the endocannabinoids AEA and 2-AG to produce CB1 agonist-like effects when administered alone or after enzyme inhibition. Results indicate that CB1-related discriminative-stimulus effects were produced by combined, but not selective, inhibition of FAAH and MGL, and that these effects were non-surmountably antagonized by low doses of rimonabant. Additionally, FAAH- or MGL-inhibition revealed CB1-like subjective effects produced by AEA, but not 2-AG. Taken together, the present data suggest that therapeutic effects of combined, but not selective, enhancement of AEA or 2-AG activity via enzyme inhibition may be accompanied by CB1 receptor-mediated subjective effects.” https://www.ncbi.nlm.nih.gov/pubmed/28947487 http://jpet.aspetjournals.org/content/early/2017/09/25/jpet.117.244392]]>

Targeting the Endocannabinoid System to Treat Sepsis

“Sepsis is a complex immune disorder that can affect the function of almost all organ systems in the body. This disorder is characterised by a malfunctioning immune response to an infection that involves both pro-inflammatory and immunosuppressive mediators. This leads to severe damage and failure of vital organs, resulting in patient death. Sepsis, septic shock, and systemic inflammatory response syndrome are the leading causes of mortality in surgical intensive care unit patients internationally. The current lack of viable therapeutic treatment options for sepsis underscores our insufficient understanding of this complex disease. The endocannabinoid system, a key regulator of essential physiological functions including the immune system, has recently emerged as a potential therapeutic target for sepsis treatment. The endocannabinoid system acquires its name from the plant Cannabis Sativa, which has been used medically to treat a variety of ailments, as well as recreationally for centuries. Cannabis Sativa contains more than 60 active phytocannabinoids with the primary phytocannabinoid Δ9-tetrahydrocannabinol (THC), (6) activating both endogenous endocannabinoid receptors. The endocannabinoid system represents a potential therapeutic target in sepsis due to the presence of cannabinoid receptors (CB2) on immune cells. In this review we discuss how various targets within the endocannabinoid system can be manipulated to treat the immune consequences of sepsis. One of the targets outlined are the endocannabinoid receptors and modulation of their activity through pharmacological agonists and antagonists. Another therapeutic target covered in this review is the modulation of the endocannabinoid degradative enzyme’s activity. Modulation of degradative enzyme activity can change the levels of endogenous cannabinoids thereby altering immune activity. Overall, activation of the CB2 receptors causes immunosuppression and can be beneficial during the hyperactivated immune state of sepsis, while suppression of the CB2 receptors may be beneficial during a hypoimmune septic state. The endocannabinoid system modulates the immune response in experimental sepsis. Manipulating the endocannabinoid system may have potential therapeutic benefit in clinical sepsis where immune and inflammatory dysfunction can be detrimental. Multiple targets exist within the endocannabinoid system, e.g. the system can be targeted at the level of receptors by administration of synthetic compounds, similar to the endocannabinoids, which either increase or inhibit receptor activation to provide the desired therapeutic effect. Alternatively, the endogenous enzymes that degrade endocannabinoids or cannabinoid-like lipids can also be targeted in order to manipulate the levels of endocannabinoids. Proper identification of the septic stage is crucial to determine the adequate therapeutic response that will be most beneficial. Due to the biphasic nature of sepsis immunopathology, immune suppression through endocannabinoid modulation can help mitigate the hyper-immune response during the early septic state, while immune activation may be beneficial in later stages.” http://www.signavitae.com/2013/05/targeting-the-endocannabinoid-system-to-treat-sepsis/ http://www.signavitae.com/2013/05/targeting-the-endocannabinoid-system-to-treat-sepsis/]]>

Targeting fatty acid amide hydrolase as a therapeutic strategy for antitussive therapy.

“Cough is the most common reason to visit a primary care physician, yet it remains an unmet medical need. Fatty acid amide hydrolase (FAAH) is an enzyme that breaks down endocannabinoids, and inhibition of FAAH produces analgesic and anti-inflammatory effects. Cannabinoids inhibit vagal sensory nerve activation and the cough reflex, so it was hypothesised that FAAH inhibition would produce antitussive activity via elevation of endocannabinoids. Primary vagal ganglia neurons, tissue bioassay, in vivoelectrophysiology and a conscious guinea pig cough model were utilised to investigate a role for fatty acid amides in modulating sensory nerve activation in vagal afferents. FAAH inhibition produced antitussive activity in guinea pigs with concomitant plasma elevation of the fatty acid amides N-arachidonoylethanolamide (anandamide), palmitoylethanolamide, N-oleoylethanolamide and linoleoylethanolamide. Palmitoylethanolamide inhibited tussive stimulus-induced activation of guinea pig airway innervating vagal ganglia neurons, depolarisation of guinea pig and human vagus, and firing of C-fibre afferents. These effects were mediated via a cannabinoid CB2/Gi/o-coupled pathway and activation of protein phosphatase 2A, resulting in increased calcium sensitivity of calcium-activated potassium channels. These findings identify FAAH inhibition as a target for the development of novel, antitussive agents without the undesirable side-effects of direct cannabinoid receptor agonists.” https://www.ncbi.nlm.nih.gov/pubmed/28931663 http://erj.ersjournals.com/content/50/3/1700782]]>

Inhibition of Wnt/β-Catenin pathway and Histone acetyltransferase activity by Rimonabant: a therapeutic target for colon cancer.

  “In a high percentage (≥85%) of both sporadic and familial adenomatous polyposis forms of colorectal cancer (CRC), the inactivation of the APC tumor suppressor gene initiates tumor formation and modulates the Wnt/β-Catenin transduction pathways involved in the control of cell proliferation, adhesion and metastasis. Increasing evidence showed that the endocannabinoids control tumor growth and progression, both in vitro and in vivo. We evaluated the effect of Rimonabant, a Cannabinoid Receptor 1 (CB1) inverse agonist, on the Wnt/β-Catenin pathway in HCT116 and SW48 cell lines carrying the genetic profile of metastatic CRC poorly responsive to chemotherapies. Obtained data heavily supported the rationale for the use of cannabinoids in combined therapies for metastatic CRC harbouring activating mutations of β-Catenin.” https://www.ncbi.nlm.nih.gov/pubmed/28916833 https://www.nature.com/articles/s41598-017-11688-x
]]>