Can Cannabinoids Modulate Fibrotic Progression in Systemic Sclerosis?

“Since ancient times, plants have been used for therapeutic purposes.

Cannabis sativa has been widely used as a medicinal herb by Ayurveda and traditional Chinese medicine for centuries.

According to our in vitro and in vivo experimental models, cannabinoids are able to modulate fibrosis.

The exact mechanism underlying this effect requires further investigation, but it seems to go beyond their anti-inflammatory and immunomodulatory properties.

Based on the above observations, we aimed to investigate the role of cannabinoids in systemic sclerosis (SSc), an autoimmune disease characterized by diffuse fibrosis.

Since preclinical data on cannabinoids show their capability to modulate fibrosis, inflammation and vasodilatation, these molecules could be ideal drugs for targeting SSc.”

http://www.ima.org.il/FilesUpload/IMAJ/0/193/96907.pdf

MicroRNA let-7d is a target of cannabinoid CB1 receptor and controls cannabinoid signaling.

“Cannabinoid CB1 receptor, the molecular target of endocannabinoids and cannabis active components, is one of the most abundant metabotropic receptors in the brain. Cannabis is widely used for both recreational and medicinal purposes.

Despite the ever-growing fundamental roles of microRNAs in the brain, the possible molecular connections between the CB1 receptor and microRNAs are surprisingly unknown. Here, by using reporter gene constructs that express interaction sequences for microRNAs in human SH-SY5Y neuroblastoma cells, we show that CB1 receptor activation enhances the expression of several microRNAs, including let-7d.

Taken together, these findings provide the first evidence for a bidirectional link between the CB1 receptor and a microRNA, namely let-7d, and thus unveil a new player in the complex process of cannabinoid action.”

http://www.ncbi.nlm.nih.gov/pubmed/27179908

In Vitro Propagation of Cannabis sativa L. and Evaluation of Regenerated Plants for Genetic Fidelity and Cannabinoids Content for Quality Assurance.

“Cannabis sativa L. (Marijuana; Cannabaceae), one of the oldest medicinal plants in the world, has been used throughout history for fiber, food, as well as for its psychoactive properties.

The dioecious and allogamous nature of C. sativa is the major constraint to maintain the consistency in chemical profile and overall efficacy if grown from seed. Therefore, the present optimized in vitro propagation protocol of the selected elite germplasm via direct organogenesis and quality assurance protocols using genetic and chemical profiling provide an ideal pathway for ensuring the efficacy of micropropagated Cannabis sativa germplasm.

A high frequency shoot organogenesis of C. sativa was obtained from nodal segments in 0.5 μM thidiazuron medium and 95 % in vitro rhizogenesis is obtained on half-strength MS medium supplemented with 500 mg/L activated charcoal and 2.5 μM indole-3-butyric acid. Inter Simple Sequence Repeats (ISSR) and Gas Chromatography-Flame Ionization Detection (GC-FID) are successfully used to monitor the genetic stability in micropropagated plants up to 30 passages in culture and hardened in soil for 8 months.”

http://www.ncbi.nlm.nih.gov/pubmed/27108324

ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27086601

Integrating cannabis into clinical cancer care.

“Cannabis species have been used as medicine for thousands of years; only since the 1940s has the plant not been widely available for medical use.

However, an increasing number of jurisdictions are making it possible for patients to obtain the botanical for medicinal use.

For the cancer patient, cannabis has a number of potential benefits, especially in the management of symptoms. Cannabis is useful in combatting anorexia, chemotherapy-induced nausea and vomiting, pain, insomnia, and depression.

Cannabis might be less potent than other available antiemetics, but for some patients, it is the only agent that works, and it is the only antiemetic that also increases appetite.

Inhaled cannabis is more effective than placebo in ameliorating peripheral neuropathy in a number of conditions, and it could prove useful in chemotherapy-induced neuropathy.

A pharmacokinetic interaction study of vaporized cannabis in patients with chronic pain on stable doses of sustained-release opioids demonstrated no clinically significant change in plasma opiates, while suggesting the possibility of synergistic analgesia.

Aside from symptom management, an increasing body of in vitro and animal-model studies supports a possible direct anticancer effect of cannabinoids by way of a number of different mechanisms involving apoptosis, angiogenesis, and inhibition of metastasis.

Despite an absence of clinical trials, abundant anecdotal reports that describe patients having remarkable responses to cannabis as an anticancer agent, especially when taken as a high-potency orally ingested concentrate, are circulating.

Human studies should be conducted to address critical questions related to the foregoing effects.”

http://www.ncbi.nlm.nih.gov/pubmed/27022315

Polypharmacological Properties and Therapeutic Potential of β-Caryophyllene: a Dietary Phytocannabinoid of Pharmaceutical Promise.

“β-Caryophyllene (BCP) is natural bicyclic sesquiterpene abundantly found in essential oils from various spices, fruits and medicinal as well as ornamental plants. It is approved by United States Food and Drug Administration and European agencies as food additive, taste enhancer and flavoring agent and termed as a phytocannabinoid.

Various pharmacological activities such as cardioprotective, hepatoprotective, gastroprotective, neuroprotective, nephroprotective, antioxidant, anti-inflammatory, antimicrobial and immune-modulator have been reported in experimental studies. It has shown potent therapeutic promise in neuropathic pain, neurodegenerative and metabolic diseases.

CONCLUSION:

The present review provides a comprehensive insight of pharmacological and therapeutic potential of BCP, its molecular mechanism and signaling pathways in different pathological conditions. The review also examines the possibility of its further development as a novel candidate for various pathologies considering the polypharmacological and multifaceted therapeutic properties potential along with favorable oral bioavailability, lipophilicity and physicochemical properties.”

http://www.ncbi.nlm.nih.gov/pubmed/26965491

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

 

The Effect of Medicinal Cannabis on Pain and Quality of Life Outcomes in Chronic Pain: A Prospective Open-label Study.

“The objective of this prospective, open-label study was to determine the long-term effect of medicinal cannabis treatment on pain and functional outcomes in subjects with treatment-resistant chronic pain.

The treatment of chronic pain with medicinal cannabis in this open-label, prospective cohort resulted in improved pain and functional outcomes, and significant reduction in opioid use.

The results suggest long-term benefit of cannabis treatment in this group of patients…”

http://www.ncbi.nlm.nih.gov/pubmed/26889611

http://www.thctotalhealthcare.com/category/pain-2/

Cannabidiol Oil for Decreasing Addictive Use of Marijuana: A Case Report.

“This case study illustrates the use of cannabidiol (CBD) oil to decrease the addictive use of marijuana and provide anxiolytic and sleep benefits.

The second most abundant component-CBD-has been suggested to have the medicinal effects of decreasing anxiety, improving sleep, and other neuro-protective effects.

The mechanism of action for CBD has been suggested to be antagonistic to the psychoactive properties of THC in many locations within the central nervous system. Such action raises the issue of whether it might be beneficial to use CBD in isolation to facilitate withdrawal of marijuana use.

With use of the CBD oil, the patient reported being less anxious, as well as settling into a regular pattern of sleep. He also indicated that he had not used any marijuana since starting the CBD oil. With the decrease in the dosage to 18 mg, the patient was able to maintain his nonuse of marijuana.”

http://www.ncbi.nlm.nih.gov/pubmed/26807069

Medicinal cannabis.

“A number of therapeutic uses of cannabis and its derivatives have been postulated from preclinical investigations.

Possible clinical indications include spasticity and pain in multiple sclerosis, cancer-associated nausea and vomiting, cancer pain and HIV neuropathy.

Controversies lie in how to produce, supply and administer cannabinoid products.

Introduction of cannabinoids therapeutically should be supported by a regulatory and educational framework that minimises the risk of harm to patients and the community.

The Regulator of Medicinal Cannabis Bill 2014 is under consideration in Australia to address this.

Nabiximols is the only cannabinoid on the Australian Register of Therapeutic Goods at present, although cannabidiol has been recommended for inclusion in Schedule 4.”

http://www.ncbi.nlm.nih.gov/pubmed/26843715

“There is some evidence of therapeutic benefit for cannabis products in defined patient populations.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674028/

Clinical/Therapeutic Approaches for Cannabinoid Ligands in Central and Peripheral Nervous System Diseases: Mini Review.

“Cannabinoids, the components of Cannabis sativa Linnaeus, interact with CB1 and CB2 receptors, which are located both in the central nervous system and in the periphery and thus may exert a widespread biological activity in the body.

The main medicinal properties of cannabinoids include analgesic, anti-inflammatory, antitumor, appetite stimulation, antiemesis, and muscle relaxation effects.

This mini review aims to explore existing clinical trials that investigated the use of cannabinoids in diseases affecting the nervous system.

There is evidence that cannabinoid-based drugs may effectively control some symptoms associated with nervous system dysfunction, especially various types of pain and neurologic disorders, although studies are limited.

The efficacy of cannabinoid drugs in the treatment of nervous system diseases should be verified in future large-scale randomized clinical trials.”

http://www.ncbi.nlm.nih.gov/pubmed/26818043