Characterization of endocannabinoids and related acylethanolamides in the synovial fluid of dogs with osteoarthritis: a pilot study.

 Image result for bmc veterinary research

“Cannabis-based drugs have been shown to be effective in inflammatory diseases.

A number of endocannabinoids including N- arachidonoylethanolamide (anandamide, AEA) and 2-arachidonyl glycerol (2-AG) with activity at the cannabinoidreceptors (CBR) CBR1 and CBR2, have been identified. Other structurally related endogenous fatty acid compounds such as oleoylethanolamide (OEA) and palmitoyl ethanolamide (PEA) have been identified in biological tissues.

These compounds do not bind to CBR but might be involved in facilitating the actions of directly acting endocannabinoids and thus are commonly termed “entourage” compounds due to their ability to modulate the endocannabinoid system.

The aim of this study was to evaluate the presence of endocannabinoids and entourage compounds in the synovial fluid of dogs with osteoarthritis subjected to arthrotomy of the knee joint. Cytokines and cytology were studied as well.

AEA, 2-AG, OEA and PEA were all present in the synovial fluid of arthritic knees and in the contralateral joints; in addition, a significant increase of OEA and 2AG levels were noted in SF from OA knees when compared to the contralateral joints.

The identification and quantification of endocannabinoids and entourage compounds levels in synovial fluids from dogs with OA of the knee is reported for the first time. Our data are instrumental for future studies involving a greater number of dogs. Cannabinoids represent an emerging and innovative pharmacological tool for the treatment of OA and further studies are warranted to evaluate the effectiveness of cannabinoids in veterinary medicine.”

https://www.ncbi.nlm.nih.gov/pubmed/29110674

“The ECS can be exploited as a potential therapeutic option for OA. We have demonstrated the presence of AEA, 2-AG, OEA and PEA in the SF of dogs with OA. Our data open the avenue to future studies involving a higher number of dogs and aimed at defining the role played by these compounds in OA of the dogs. Both plant-derived and synthetic agonists of CBRs represent an emerging and innovative pharmacological tool for the treatment of OA. ” https://bmcvetres.biomedcentral.com/articles/10.1186/s12917-017-1245-7

A review of methods for the chemical characterization of cannabis natural products.

Journal of Separation Science

“Cannabis has garnered a great deal of new attention in the past couple of years in the United States due to the increasing instances of its legalization for recreational use and indications for medicinal benefit.

Despite a growing number of laboratories focused on cannabis analysis, the separation science literature pertaining to the determination of cannabis natural products is still in its infancy despite the plant having been utilized by humans for nearly 30 000 years and it being now the most widely used drug world-wide. This is largely attributable to the restrictions associated with cannabis as it is characterized as a Schedule 1 drug in the United States.

Presented here are reviewed analytical methods for the determination of cannabinoids (primarily) and terpenes (secondarily), the primary natural products of interest in cannabis plants. Focus is placed foremost on analyses from plant extracts and the various instrumentation and techniques that are used, but some coverage is also given to analysis of cannabinoid metabolites found in biological fluids. The goal of this work is to provide a collection of relevant separation science information, upon which the field of cannabis analysis can continue to grow.”

https://www.ncbi.nlm.nih.gov/pubmed/28986974

http://onlinelibrary.wiley.com/doi/10.1002/jssc.201701003/abstract

Potential of plant-sourced phenols for inflammatory bowel disease.

“Inflammatory bowel disease (IBD) is an uncontrolled chronic inflammatory intestinal disorder, which requires medications for long-term therapy. Facing the challenges of severe side effects and drug resistance of conventional medications, to develop the strategies meet the stringent safety and effectiveness in the long-term treatment are urgent in the clinics.

In this regard, a growing body of evidence confirms plant-sourced phenols, such as flavonoids, catechins, stilbenes, coumarins, quinones, lignans, phenylethanoids, cannabinoid phenols, tannins, phenolic acids and hydroxyphenols, exert potent protective benefits with fewer undesirable effects in conditions of acute or chronic intestinal inflammation through improvement of colonic oxidative and pro-inflammatory status, preservation of the epithelial barrier function and modulation of gut microbiota.

In this review, the great potential of plant-sourced phenols and their action mechanisms for the treatment or prevention of IBD in recent research are summarized, which may help the further development of new preventive/adjuvant regimens for IBD.”

https://www.ncbi.nlm.nih.gov/pubmed/28990509

http://www.eurekaselect.com/156267/article

Cannabis and Cannabinoids for Chronic Pain.

Current Rheumatology Reports

“The purpose of this study was to provide the most up-to-date scientific evidence of the potential analgesic effects, or lack thereof, of the marijuana plant (cannabis) or cannabinoids, and of safety or tolerability of their long-term use.

RECENT FINDINGS:

We found that inhaled (smoked or vaporized) cannabis is consistently effective in reducing chronic non-cancer pain.

Oral cannabinoids seem to improve some aspects of chronic pain (sleep and general quality of life), or cancer chronic pain, but they do not seem effective in acute postoperative pain, abdominal chronic pain, or rheumatoid pain.

The available literature shows that inhaled cannabis seems to be more tolerable and predictable than oral cannabinoids. Cannabis or cannabinoids are not universally effective for pain. Continued research on cannabis constituents and improving bioavailability for oral cannabinoids is needed. Other aspects of pain management in patients using cannabis require further open discussion: concomitant opioid use, medical vs. recreational cannabis, abuse potential, etc.”

Bioactivities of alternative protein sources and their potential health benefits.

“Increasing the utilisation of plant proteins is needed to support the production of protein-rich foods that could replace animal proteins in the human diet so as to reduce the strain that intensive animal husbandry poses to the environment. Lupins, quinoa and hempseed are significant sources of energy, high quality proteins, fibre, vitamins and minerals. In addition, they contain compounds such as polyphenols and bioactive peptides that can increase the nutritional value of these plants. From the nutritional standpoint, the right combination of plant proteins can supply sufficient amounts of essential amino acids for human requirements. This review aims at providing an overview of the current knowledge of the nutritional properties, beneficial and non-nutritive compounds, storage proteins, and potential health benefits of lupins, quinoa and hempseed.”

https://www.ncbi.nlm.nih.gov/pubmed/28804797

Efficacy and Tolerability of Phytomedicines in Multiple Sclerosis Patients: A Review.

 CNS Drugs “Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disorder of the central nervous system (CNS) that can cause cognition, mobility, and sensory impairments. It is considered one of the most common non-traumatic causes of disability in the world. The aim of the present article was to review the clinical evidence related to medicinal plants in the management of MS symptoms. Electronic databases, including the Cochrane Library, Pubmed, and Scopus, were searched for entries from 1966 to February 2017. Only clinical studies were included in this review. Different medicinal plants have positive effects on MS, including Andrographis paniculata, Boswellia papyrifera, Ruta graveolens, Vaccinium spp., Camellia sinensis, Panax ginseng, Aloysia citrodora, Ginkgo biloba, Oenothera biennis, and Cannabis sativa. C. sativa had the highest level of clinical evidence, supporting its efficacy in MS symptoms. Proanthocyanidins, ginkgo flavone glycosides, ginsenosides, epigallocatechin-3-gallate, cannabinoids (including delta-9-tetrahydrocannabinol and cannabidiol), boswellic acid, and andrographolide were presented as the main bioactive components of medicinal plants with therapeutic benefits in MS. The main complications of MS in which natural drugs were effective include spasticity, fatigue, scotoma, incontinence, urinary urgency, nocturia, memory performance, functional performance, and tremor. Herbal medicines were mostly well tolerated, and the adverse effects were limited to mild to moderate. Further well-designed human studies with a large sample size and longer follow-up period are recommended to confirm the role of medicinal plants and their metabolites in the management of MS.” https://www.ncbi.nlm.nih.gov/pubmed/28948486
]]>