Advances towards the Discovery of GPR55 Ligands.

“The G-protein-coupled receptor 55 (GPR55) was identified in 1999.

It was proposed as a novel member of the endocannabinoid system due to the fact that some endogenous, plant-derived and synthetic cannabinoid ligands act on GPR55. However, the complexity of the cellular downstream signaling pathways related to GPR55 activation delayed the discovery of selective GPR55 ligands.

It was only a few years ago that the high throughput screening of libraries of pharmaceutical companies and governmental organizations allowed to identify selective GPR55 agonists and antagonists. Since then, several GPR55 modulator scaffolds have been reported.

The relevance of GPR55 has been explored in diverse physiological and pathological processes revealing its role in inflammation, neuropathic pain, bone physiology, diabetes and cancer.

Considering GPR55 as a new promising therapeutic target, there is a clear need for new selective and potent GPR55 modulators. This review will address a current structural update of GPR55 ligands.”

http://www.ncbi.nlm.nih.gov/pubmed/27109575

Endocannabinoids signaling: Molecular mechanisms of liver regulation and diseases.

“The endocannabinoid system (ECS) includes endocannabinoids (eCBs), cannabinoid (CB) receptors and the enzymes that are responsible for endocannabinoid production and metabolism. The ECS has been reported to be present in both brain and peripheral tissues.

Recent studies have indicated that eCBs and their receptors are involved in the development of various liver diseases. They were found to be altered in response to many danger factors.

It is generally accepted that eCB may exert a protective action via CB2 receptors in different liver diseases. However, eCBs have also been demonstrated to have pathogenic role via their CB1 receptors.

Although the therapeutic potential of CB1 receptor blockade in liver diseases is limited by its neuropsychiatric side effects, many studies have been conducted to search for novel, peripherally restricted CB1 antagonists or CB2 agonists, which may minimize their neuropsychiatric side effects in clinical use.

This review summarizes the current understanding of the ECS in liver diseases and provides evidence for the potential to develop new therapeutic strategies for the treatment of these liver diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27100518

Discovery of KLS-13019, a Cannabidiol-Derived Neuroprotective Agent, with Improved Potency, Safety, and Permeability.

“Cannabidiol is the nonpsychoactive natural component of C. sativa that has been shown to be neuroprotective in multiple animal models.

Our interest is to advance a therapeutic candidate for the orphan indication hepatic encephalopathy (HE). HE is a serious neurological disorder that occurs in patients with cirrhosis or liver failure.

Although cannabidiol is effective in models of HE, it has limitations in terms of safety and oral bioavailability.

Herein, we describe a series of side chain modified resorcinols that were designed for greater hydrophilicity and “drug likeness”, while varying hydrogen bond donors, acceptors, architecture, basicity, neutrality, acidity, and polar surface area within the pendent group.

Our primary screen evaluated the ability of the test agents to prevent damage to hippocampal neurons induced by ammonium acetate and ethanol at clinically relevant concentrations.

Notably, KLS-13019 was 50-fold more potent and >400-fold safer than cannabidiol and exhibited an in vitro profile consistent with improved oral bioavailability.”

http://www.ncbi.nlm.nih.gov/pubmed/27096053

ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27086601

Cannabidiol promotes browning in 3T3-L1 adipocytes.

“Recruitment of the brown-like phenotype in white adipocytes (browning) and activation of existing brown adipocytes are currently being investigated as a means to combat obesity.

The present study was designed to investigate the effects of cannabidiol (CBD), a major nonpsychotropic phytocannabinoid of Cannabis sativa, on induction of browning in 3T3-L1 adipocytes.

These data suggest possible roles for CBD in browning of white adipocytes, augmentation of lipolysis, thermogenesis, and reduction of lipogenesis.

In conclusion, the current data suggest that CBD plays dual modulatory roles in the form of inducing the brown-like phenotype as well as promoting lipid metabolism.

Thus, CBD may be explored as a potentially promising therapeutic agent for the prevention of obesity.”

http://www.ncbi.nlm.nih.gov/pubmed/27067870

http://www.thctotalhealthcare.com/category/obesity-2/

Orexin-A represses satiety-inducing POMC neurons and contributes to obesity via stimulation of endocannabinoid signaling.

“In the hypothalamic arcuate nucleus (ARC), proopiomelanocortin (POMC) neurons and the POMC-derived peptide α-melanocyte-stimulating hormone (α-MSH) promote satiety. POMC neurons receive orexin-A (OX-A)-expressing inputs and express both OX-A receptor type 1 (OX-1R) and cannabinoid receptor type 1 (CB1R) on the plasma membrane.

OX-A is crucial for the control of wakefulness and energy homeostasis and promotes, in OX-1R-expressing cells, the biosynthesis of the endogenous counterpart of marijuana’s psychotropic and appetite-inducing component Δ9-tetrahydrocannabinol, i.e., the endocannabinoid 2-arachidonoylglycerol (2-AG), which acts at CB1R.

We report that OX-A/OX-1R signaling at POMC neurons promotes 2-AG biosynthesis, hyperphagia, and weight gain by blunting α-MSH production via CB1R-induced and extracellular-signal-regulated kinase 1/2 activation- and STAT3 inhibition-mediated suppression ofPomcgene transcription. Because the systemic pharmacological blockade of OX-1R by SB334867 caused anorectic effects by reducing food intake and body weight, our results unravel a previously unsuspected role for OX-A in endocannabinoid-mediated promotion of appetite by combining OX-induced alertness with food seeking. Notably, increased OX-A trafficking was found in the fibers projecting to the ARC of obese mice (ob/oband high-fat diet fed) concurrently with elevation of OX-A release in the cerebrospinal fluid and blood of mice.

Furthermore, a negative correlation between OX-A and α-MSH serum levels was found in obese mice as well as in human obese subjects (body mass index > 40), in combination with elevation of alanine aminotransferase and γ-glutamyl transferase, two markers of fatty liver disease.

These alterations were counteracted by antagonism of OX-1R, thus providing the basis for a therapeutic treatment of these diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27071101

Endocannabinoids and immune regulation

Logo of nihpa

“Cannabinoid pharmacology has made important advances in recent years after the discovery of the cannabinoid receptors.

These discoveries have added to our understanding of exogenous and endogenous cannabinoid signaling along with exploring the various pathways of their biosynthesis, molecular structure, inactivation, and anatomical distribution of their receptors throughout the body.

The endocannabinoid system is involved in immunoregulation and neuroprotection.

The discovery of cannabinoid receptors occurring naturally throughout the vertebrate body and the availability of highly selective and potent canabimimetics led to the identification of a naturally occurring lipid signaling system termed the endocannabinoid system.

Interestingly, the endocannabinoid system dates back very long in the evolution because it exists as an ancient plant signaling system regulating the plant immunity-related genes in response to infection and stress.

The main pharmacological functions of the endocannabinoid system include neuromodulation, controlling motor functions, cognition, emotional responses, homeostasis and motivation. However, in the periphery, this system is an important modulator of autonomic nervous system, the immune system and microcirculation.

There have been a number of recent studies which have demonstrated that the endocannabinoids have both inhibitory effects and stimulatory impact on the immune system and may be actually important in homeostasis or control of the immune reactions.

 The image of endocannabinoid system now appears to be of a modulatory complex which affects the physiological functions in peripheral tissues and can thus be considered as a potential therapeutic target in the future.
Thus, manipulation of endocannabinoids in vivo may constitute a novel treatment modality against inflammatory disorders.”

MAPPING CANNABINOID RECEPTOR 1 ALLOSTERIC SITE(S): CRITICAL MOLECULAR DETERMINANT AND SIGNALING PROFILE OF GAT100 – A NOVEL, POTENT AND IRREVERSIBLY BINDING PROBE.

“One of the most abundant G-protein coupled receptors (GPCRs) in brain, the cannabinoid 1 receptor (CB1R) is a tractable therapeutic target for treating diverse psychobehavioral and somatic disorders.

Adverse on-target effects associated with small-molecule CB1R orthosteric agonists and inverse agonists/antagonists have plagued their translational potential. Allosteric CB1R modulators offer a potentially safer modality through which CB1R signaling may be directed for therapeutic benefit.

Rational design of candidate, drug-like CB1R allosteric modulators requires greater understanding of the architecture of the CB1R allosteric endodomain(s) and the capacity of CB1R allosteric ligands to tune the receptor’s information output.

These data help inform the engineering of newer-generation, druggable CB1R allosteric modulators and demonstrate the utility of GAT100 as a covalent probe for mapping structure-function correlates characteristic of the druggable CB1R allosteric space.”

http://www.ncbi.nlm.nih.gov/pubmed/27046127

Distinctive effects of eicosapentaenoic and docosahexaenoic acids in regulating neural stem cell fate are mediated via endocannabinoid signalling pathways.

“Emerging evidence suggests a complex interplay between the endocannabinoid system, omega-3 fatty acids and the immune system in the promotion of brain self-repair.

However, it is unknown if all omega-3 fatty acids elicit similar effects on adult neurogenesis and if such effects are mediated or regulated by interactions with the endocannabinoid system. This study investigated the effects of DHA and EPA on neural stem cell (NSC) fate and the role of the endocannabinoid signalling pathways in these effects.

EPA, but not DHA, significantly increased proliferation of NSCs compared to controls, an effect associated with enhanced levels of the endocannabinoid 2-arachidonylglycerol (2-AG) and p-p38 MAPK, effects attenuated by pre-treatment with CB1 (AM251) or CB2 (AM630) receptor antagonists.

Furthermore, in NSCs derived from IL-1β deficient mice, EPA significantly decreased proliferation and p-p38 MAPK levels compared to controls, suggesting a key role for IL-1β signalling in the effects observed. Although DHA similarly increased 2-AG levels in wild-type NSCs, there was no concomitant increase in proliferation or p-p38 MAPK activity. In addition, in NSCs from IL-1β deficient mice, DHA significantly increased proliferation without effects on p-P38 MAPK, suggesting effects of DHA are mediated via alternative signalling pathways.

These results provide crucial new insights into the divergent effects of EPA and DHA in regulating NSC proliferation and the pathways involved, and highlight the therapeutic potential of their interplay with endocannabinoid signalling in brain repair.”

http://www.ncbi.nlm.nih.gov/pubmed/27044662

The therapeutic use of cannabinoids: Forensic aspects.

“Since 2013 in the Italian market has been introduced the Nabiximols, a drug containing two of the main active cannabinoids: Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). This drug has been approved in Italy in the treatment of Multiple Sclerosis (MS). It is an oral spray formulation and each puff of 100μl contains 2.7mg of Δ9-THC and 2.5mg of CBD.

In the present study we analyzed urine and blood samples collected from a group of 20 patients treated with Nabiximols in order to evaluate: blood Δ9-THC concentrations in relation to the dose administered and the duration of treatment and the potentiality of this medication to be used for drug habit.

The study was conducted on a sample group of patients affected by MS, of both sexes, age: 49-61 years, treated with Nabiximols for short (28 days) or long-term.

The results of our study allow affirming that it is unlikely to use this medication for drug habit or to sale it in the black market because of the low blood concentrations available and of its high costs.

These statements were confirmed by: (a) the low Δ9-THC concentrations in the pharmaceutical formulation; (b) the low blood concentrations produced by Nabiximols administration, more than 10 times smaller than the blood concentrations known to produce psychotropic effects; (c) the presence of CBD (Δ9-THC natural antagonist); (d) the route of administration (inhaled, not smoked).”

http://www.ncbi.nlm.nih.gov/pubmed/27038587