Ligand activation of cannabinoid receptors attenuates hypertrophy of neonatal rat cardiomyocytes.

“Endocannabinoids are bioactive amides, esters, and ethers of long-chain polyunsaturated fatty acids.

Evidence suggests that activation of the endocannabinoid pathway offers cardioprotection against myocardial ischemia, arrhythmias, and endothelial dysfunction of coronary arteries.

In conclusion, CB-13 inhibits cardiomyocyte hypertrophy through AMPK-eNOS signaling and may represent a novel therapeutic approach to cardioprotection.”

http://www.ncbi.nlm.nih.gov/pubmed/24979612

6B.09: EFFECT OF CANNABINOID RECEPTOR ACTIVATION ON ABERRANT MITOCHONDRIAL BIOENERGETICS IN HYPERTROPHIED CARDIAC MYOCYTES.

“We recently reported that activation of endocannabinoid receptors attenuates cardiac myocyte hypertrophy. Mitochondrial dysfunction has emerged as a critical determinant of aberrant myocyte energy production in cardiac hypertrophy. Thus, we determined endocannabinoid influence on mitochondrial function in the hypertrophied cardiac myocyte…

The cardioprotective actions of liganded cannabinoid receptors extend to the mitochondrial level. Therefore, a cannabinoid-based treatment for cardiac disease remains a potential therapeutic strategy that warrants further study.”

http://www.ncbi.nlm.nih.gov/pubmed/26102932

CB1 cannabinoid receptor antagonist attenuates left ventricular hypertrophy and Akt-mediated cardiac fibrosis in experimental uremia.

“Cannabinoid receptor type 1 (CB1R) plays an important role in the development of myocardial hypertrophy and fibrosis-2 pathological features of uremic cardiomyopathy. However, it remains unknown whether CB1R is involved in the pathogenesis of uremic cardiomyopathy.

Here, we aimed to elucidate the role of CB1R in the development of uremic cardiomyopathy via modulation of Akt signalling…

CB1R inhibition exerts anti-fibrotic effects via modulation of Akt signaling in H9c2 myofibroblasts.

Therefore, the development of drugs targeting CB1R may have therapeutic potential in the treatment of uremic cardiomyopathy.”

Emerging targets in treating pain.

“Chronic pain poses an enormous socioeconomic burden for the more than 30% of people who suffer from it, costing over $600 billion per year in the USA. In recent years, there has been a surge in preclinical and clinical research endeavors to try to stem this epidemic. Preclinical studies have identified a wide array of potential targets, with some of the most promising translational research being performed on novel opioid receptors, cannabinoid receptors, selective ion channel blockers, cytokine inhibitors, nerve growth factor inhibitors, N-methyl-D-aspartate receptor antagonists, glial cell inhibitors, and bisphosphonates.

SUMMARY:

There are many obstacles for the development of effective medications to treat chronic pain, including the inherent challenges in identifying pathophysiological mechanisms, the overlap and multiplicity of pain pathways, and off-target adverse effects stemming from the ubiquity of drug target receptor sites and the lack of highly selective receptor ligands. Despite these barriers, the number and diversity of potential therapies have continued to grow, to include disease-modifying and individualized drug treatments.”

http://www.ncbi.nlm.nih.gov/pubmed/26087270

http://www.thctotalhealthcare.com/category/pain-2/

Role of the Endocannabinoid System in Diabetes and Diabetic Complications.

“Increasing evidence suggests that an overactive endocannabinoid system (ECS) may contribute to the development of diabetes by promoting energy intake and storage, impairing both glucose and lipid metabolism, and by exerting pro-apoptotic effects in pancreatic β cells, and by facilitating inflammation in pancreatic islets.

Furthermore, hyperglycemia associated with diabetes has also been implicated in triggering perturbations of the ECS amplifying the above mentioned pathological processes, eventually culminating in a vicious circle.

Compelling evidence from preclinical studies indicates that the ECS also influences diabetes-induced oxidative stress, inflammation, fibrosis, and subsequent tissue injury in target organs for diabetic complications.

In this review, we provide an update on the contribution of the ECS to the pathogenesis of diabetes and diabetic microvascular (retinopathy, nephropathy, and neuropathy) and cardiovascular complications. The therapeutic potential of targeting the ECS is also discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/26076890#

http://www.thctotalhealthcare.com/category/diabetes/

Pharmacologic effects of cannabidiol on acute reperfused myocardial infarction in rabbits: evaluated with 3.0T cardiac magnetic resonance imaging and histopathology.

“Cannabidiol (CBD) has anti-inflammatory effects.

We explored its therapeutic effects on cardiac ischemia-reperfusion injury with an experimental imaging platform…

Compared to controls, CBD treatment improved systolic wall thickening, significantly increased blood flow in the AAR, significantly decreased microvascular obstruction, increased the PDR by 1.7-fold, lowered the AMI-core/AAR ratio, and increased the MSI.

These improvements were associated with reductions in serum cTnI, cardiac leukocyte infiltration, and myocellular apoptosis.

Thus, CBD therapy reduced AMI size and facilitated restoration of LV function.

We demonstrated that this experimental platform has potential theragnostic utility.”

http://www.ncbi.nlm.nih.gov/pubmed/26065843

In vivo inflammation imaging using a CB2R-targeted near infrared fluorescent probe.

“Chronic inflammation is considered as a critical cause of a host of disorders, such as cancer, rheumatoid arthritis, atherosclerosis, and neurodegenerative diseases…

Imaging tools that can specifically target inflammation are therefore important to help reveal the role of inflammation in disease progression, and allows for developing new therapeutic strategies to ultimately improve patient care.

The purpose of this study was to develop a new in vivo inflammation imaging approach by targeting the cannabinoid receptor type 2 (CB2R), an emerging inflammation biomarker, using a unique near infrared (NIR) fluorescent probe…

The combined evidence indicates that NIR760-mbc94 is a promising inflammation imaging probe. Moreover, in vivo CB2R-targeted fluorescence imaging may have potential in the study of inflammation-related diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/26069858

New horizons for newborn brain protection: enhancing endogenous neuroprotection.

“Intrapartum-related events are the third leading cause of childhood mortality worldwide and result in one million neurodisabled survivors each year. Infants exposed to a perinatal insult typically present with neonatal encephalopathy (NE).

The contribution of pure hypoxia-ischaemia (HI) to NE has been debated; over the last decade, the sensitising effect of inflammation in the aetiology of NE and neurodisability is recognised.

Therapeutic hypothermia is standard care for NE in high-income countries; however, its benefit in encephalopathic babies with sepsis or in those born following chorioamnionitis is unclear.

It is now recognised that the phases of brain injury extend into a tertiary phase, which lasts for weeks to years after the initial insult and opens up new possibilities for therapy.

There has been a recent focus on understanding endogenous neuroprotection and how to boost it or to supplement its effectors therapeutically once damage to the brain has occurred as in NE.

In this review, we focus on strategies that can augment the body’s own endogenous neuroprotection.

We discuss in particular remote ischaemic postconditioning whereby endogenous brain tolerance can be activated through hypoxia/reperfusion stimuli started immediately after the index hypoxic-ischaemic insult.

Therapeutic hypothermia, melatonin, erythropoietin and cannabinoids are examples of ways we can supplement the endogenous response to HI to obtain its full neuroprotective potential.

Achieving the correct balance of interventions at the correct time in relation to the nature and stage of injury will be a significant challenge in the next decade.”

http://www.ncbi.nlm.nih.gov/pubmed/26063194

Cannabidiol as an Intervention for Addictive Behaviors: A Systematic Review of the Evidence.

“Drug addiction is a chronically relapsing disorder characterized by the compulsive desire to use drugs and a loss of control over consumption.

Cannabidiol (CBD), the second most abundant component of cannabis, is thought to modulate various neuronal circuits involved in drug addiction.

The goal of this systematic review is to summarize the available preclinical and clinical data on the impact of CBD on addictive behaviors.

MEDLINE and PubMed were searched for English and French language articles published before 2015. In all, 14 studies were found, 9 of which were conducted on animals and the remaining 5 on humans.

A limited number of preclinical studies suggest that CBD may have therapeutic properties on opioid, cocaine, and psychostimulant addiction, and some preliminary data suggest that it may be beneficial in cannabis and tobacco addiction in humans.

Further studies are clearly necessary to fully evaluate the potential of CBD as an intervention for addictive disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26056464

“CBD is an exogenous cannabinoid that acts on several neurotransmission systems involved in addiction. Animal studies have shown the possible effects of CBD on opioid and psychostimulant addiction, while human studies presented some preliminary evidence of a beneficial impact of CBD on cannabis and tobacco dependence. CBD has several therapeutic properties on its own that could indirectly be useful in the treatment of addiction disorders, such as its protective effect on stress vulnerability and neurotoxicity… The dreadful burden of substance-use disorder worldwide, combined with the clear need for new medication in the addiction field, justifies the requirement of further studies to evaluate the potential of CBD as a new intervention for addictive behaviors.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4444130/

http://www.thctotalhealthcare.com/category/addiction/

Very low doses of delta 8-THC increase food consumption and alter neurotransmitter levels following weight loss.

“We have investigated the effect of 0.001 mg/kg delta(8)-tetrahydrocannabinol (THC) on food consumption, cognitive function, and neurotransmitters in mice…

Cognitive function showed a tendency to improve in the THC-treated mice…

Delta(8)-THC increased food intake significantly more than did delta(9)-THC, while performance and activity were similar.

Thus, delta(8)-THC (0.001 mg/kg) caused increased food consumption and tendency to improve cognitive function, without cannabimimetic side effects.

Hence, a low dose of THC might be a potential therapeutic agent in the treatment of weight disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/15099912