The Endogenous Cannabinoid System Modulates Nicotine Reward and Dependence

Abstract

“A growing body of evidence suggests that the endogenous cannabinoid system modulates the addictive properties of nicotine, the main component of tobacco that produces rewarding effects. In our study, complementary transgenic and pharmacological approaches were used to test the hypothesis that the endocannabinoid system modulates nicotine reward and dependence. An acute injection of nicotine elicited normal analgesic and hypothermic effects in cannabinoid receptor (CB)(1) knockout (KO) mice and mice treated with the CB(1) antagonist rimonabant. However, disruption of CB(1) receptor signaling blocked nicotine reward, as assessed in the conditioned place preference (CPP) paradigm. In contrast, genetic deletion, or pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme responsible for catabolism of the endocannabinoid anandamide, enhanced the expression of nicotine CPP. Although the expression of spontaneous nicotine withdrawal (14 days, 24 mg/kg/day nicotine) was unaffected in CB(1) KO mice, acute administration of rimonabant (3 mg/kg) ameliorated somatic withdrawal signs in wild-type mice. Increasing endogenous levels of anandamide through genetic or pharmacological approaches exacerbated the physical somatic signs of spontaneous nicotine withdrawal in a milder withdrawal model (7 days, 24 mg/kg/day nicotine). Moreover, FAAH-compromised mice displayed increased conditioned place aversion in a mecamylamine-precipitated model of nicotine withdrawal. These findings indicate that endocannabinoids play a role in the rewarding properties of nicotine as well as nicotine dependence liability. Specifically, increasing endogenous cannabinoid levels magnifies, although disrupting CB(1) receptor signaling, attenuates nicotine reward and withdrawal. Taken together, these results support the hypothesis that cannabinoid receptor antagonists may offer therapeutic advantages to treat tobacco dependence.”

“In conclusion, we have shown that the endocannabinoid system modulates various aspects of nicotine dependence in a differential way. Indeed, FAAH inhibition dramatically enhances nicotine reward through a CB1 mechanism that is most likely due to elevated levels of AEA. Moreover, our findings indicate that endogenous cannabinoid tone indirectly modulates the development of nicotine addiction by affecting the balance between the rewarding and aversive properties of nicotine.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746999/

Cannabinoid CB1 receptor antagonists as potential pharmacotherapies for drug abuse disorders.

Abstract

“Since the discovery of the cannabinoid CB1 receptor (CB1R) in 1988, and subsequently of the CB2 receptor (CB2R) in 1993, there has been an exponential growth of research investigating the functions of the endocannabinoid system. The roles of CB1Rs have been of particular interest to psychiatry because of their selective presence within the CNS and because of their association with brain-reward circuits involving mesocorticolimbic dopamine systems. One potential role that has become of considerable focus is the ability of CB1Rs to modulate the effects of the drugs of abuse. Many drugs of abuse elevate dopamine levels, and the ability of CB1R antagonists or inverse agonists to modulate these elevations has suggested their potential application as pharmacotherapies for treating drug abuse disorders. With the identification of the selective CB1R antagonist, rimonabant, in 1994, and subsequently of other CB1R antagonists, there has been a rapid expansion of research investigating their ability to modulate the effects of the drugs of abuse. This review highlights some of the preclinical and clinical studies that have examined the effects of CB1R antagonists under conditions potentially predictive of their therapeutic efficacy as treatments for drug abuse disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/19367507

The endocannabinoid system: emotion, learning and addiction.

Abstract

“The identification of the cannabinoid receptor type 1 (CB1 receptor) was the milestone discovery in the elucidation of the behavioural and emotional responses induced by the Cannabis sativa constituent Delta(9)-tetrahydrocannabinol. The subsequent years have established the existence of the endocannabinoid system. The early view relating this system to emotional responses is reflected by the fact that N-arachidonoyl ethanolamine, the pioneer endocannabinoid, was named anandamide after the Sanskrit word ‘ananda’, meaning ‘bliss’. However, the emotional responses to cannabinoids are not always pleasant and delightful. Rather, anxiety and panic may also occur after activation of CB1 receptors. The present review discusses three properties of the endocannabinoid system as an attempt to understand these diverse effects. First, this system typically functions ‘on-demand’, depending on environmental stimuli and on the emotional state of the organism. Second, it has a wide neuro-anatomical distribution, modulating brain regions with different functions in responses to aversive stimuli. Third, endocannabinoids regulate the release of other neurotransmitters that may have even opposing functions, such as GABA and glutamate. Further understanding of the temporal, spatial and functional characteristics of this system is necessary to clarify its role in emotional responses and will promote advances in its therapeutic exploitation.”

http://www.ncbi.nlm.nih.gov/pubmed/18422832

Cannabinoid CB1 Receptor Antagonists as Promising New Medications for Drug Dependence

 “This review examines the development of cannabinoid CB1 receptor antagonists as a new class of therapeutic agents for drug addiction. Abused drugs [alcohol, opiates, Δ9-tetrahydrocannabinol (Δ9-THC), and psychostimulants, including nicotine] elicit a variety of chronically relapsing disorders by interacting with endogenous neural pathways in the brain. In particular, they share the common property of activating mesolimbic dopamine brain reward systems, and virtually all abused drugs elevate dopamine levels in the nucleus accumbens. Cannabinoid CB1 receptors are expressed in this brain reward circuit and modulate the dopamine-releasing effects of Δ9-THC and nicotine. Rimonabant (SR141716), a CB1 receptor antagonist, blocks both the dopamine-releasing and discriminative and rewarding effects of Δ9-THC in animals. Blockade of CB1 receptor activity by genetic invalidation also decreases rewarding effects of opiates and alcohol in animals. Although CB1 receptor blockade is generally ineffective in reducing the self-administration of cocaine in rodents and primates, it reduces the reinstatement of extinguished cocaine-seeking behavior produced by cocaine-associated conditioned stimuli and cocaine-priming injections. Likewise, CB1 receptor blockade is effective in reducing nicotine-seeking behavior induced by re-exposure to nicotine-associated stimuli. Some of these findings have been recently validated in humans. In clinical trials, Rimonabant blocks the subjective effects of Δ9-THC in humans and prevents relapse to smoking in exsmokers. Findings from both clinical and preclinical studies suggest that ligands blocking CB1 receptors offer a novel approach for patients suffering from drug dependence that may be efficacious across different classes of abused drugs.”

“Cannabinoid CB1 Receptor Blockade: A Step Forward in Drug-Dependence Therapy?”

“Despite advances in the understanding of neurobiological and behavioral mechanisms that lead to drug dependence over the last 20 years, no effective treatment is yet available for cocaine or Δ9-THC dependence. Moreover, medications available for ethanol, nicotine, or opioid dependence are ineffective in many subjects. For example, the rate of smoking cessation by subjects entering into clinical trials that combine effective medication and behavioral and cognitive therapy is around 30% at one year; most subjects relapse. Cannabinoid CB1 receptor antagonists represent a potentially useful tool not only for blocking the direct reinforcing effects of Δ9-THC, nicotine, and ethanol, but also for preventing relapse to the use of various drugs of abuse, including cocaine, methamphetamine, and heroin. In addition, environmental stimuli seem to be one of the major factors that can trigger relapse to drug use in abstinent drug abusers. This process is not only critical for psychostimulant abuse, but also for nicotine and heroin abuse, and probably for other drugs of abuse such as ethanol. By reducing the motivational effects of drug-related environmental stimuli, cannabinoid CB1 receptor antagonists might, therefore, provide an effective means for preventing relapse to drug-seeking behavior in abstinent drug abusers, providing a promising new tool for the treatment of dependence on a wide range of abused drugs.”

http://jpet.aspetjournals.org/content/312/3/875.long

Cannabinoid CB1 receptors control conditioned drug seeking.

Abstract

“Recent developments have implicated cannabinoid CB1 receptors as a novel target for a new class of therapeutic agents used to treat drug addiction. CB1 receptors are expressed in the motivational circuitry of the brain and modulate drug seeking. Blockade of the CB1 receptor is particularly effective in reducing cue-induced reinstatement of drug seeking, an animal analogue of cue-induced relapse in human addicts. These relapse-preventing properties are observed with different classes of abused drug (i.e. psychostimulants, opiates, nicotine and alcohol). In addition, recent evidence indicates a more general role of CB1 receptors in reward-related memories, which is consistent with the proposed role of endocannabinoids in memory-related plasticity. Relapse-preventing actions and inhibitory effects on weight gain were confirmed recently in clinical trials with the CB1 antagonist rimonabant. Collectively, these clinical and preclinical studies suggest that antagonists of CB1 receptors offer a novel approach in the treatment of addictive behaviours.”

http://www.ncbi.nlm.nih.gov/pubmed/15992935

A critical review of the antipsychotic effects of cannabidiol: 30 years of a translational investigation.

Abstract

“Δ 9-tetrahydrocannabinol (Δ 9-THC) is the main compound of the Cannabis Sativa responsible for most of the effects of the plant. Another major constituent is cannabidiol (CBD), formerly regarded to be devoid of pharmacological activity. However, laboratory rodents and human studies have shown that this cannabinoid is able to prevent psychotic-like symptoms induced by high doses of Δ 9- THC. Subsequent studies have demonstrated that CBD has antipsychotic effects as observed using animal models and in healthy volunteers. Thus, this article provides a critical review of the research evaluating antipsychotic potential of this cannabinoid. CBD appears to have pharmacological profile similar to that of atypical antipsychotic drugs as seem using behavioral and neurochemical techniques in animal models. Additionally, CBD prevented human experimental psychosis and was effective in open case reports and clinical trials in patients with schizophrenia with a remarkable safety profile. Moreover, fMRI results strongly suggest that the antipsychotic effects of CBD in relation to the psychotomimetic effects of Δ 9-THC involve the striatum and temporal cortex that have been traditionally associated with psychosis. Although the mechanisms of the antipsychotic properties are still not fully understood, we propose a hypothesis that could have a heuristic value to inspire new studies. These results support the idea that CBD may be a future therapeutic option in psychosis, in general and in schizophrenia, in particular.”

http://www.ncbi.nlm.nih.gov/pubmed/22716160

Cannabidiol, a Cannabis sativa constituent, as an antipsychotic drug

“The use Cannabis sativa(cannabis) extracts as medicine was described in China and India before the birth of Christ. The therapeutic use of cannabis was introduced in Western medicine in the first half of the 19th century and reached its climax in the last two decades of the same century. At the turn of the century, several pharmaceutical companies were marketing cannabis extracts and tinctures which were prescribed by doctors for many different complaints including pain, whooping cough and asthma, and as a sedative/hypnotic agent. However, the use of cannabis as a medicine almost completely disappeared at about the middle of the 20th century. The main reasons for this disappearance were the variable potency of cannabis extracts, the erratic and unpredictable individual responses, the introduction of synthetic and more stable pharmaceutical substitutes such as aspirin, chloral hydrate and barbiturates, the recognition of important adverse effects such as anxiety and cognitive impairment, and the legal restrictions to the use of cannabis-derived medicines .”

“Today this situation has changed considerably. The main active psychotropic constituent of cannabis, D9-tetrahydrocannabinol (D9-THC), was isolated, identified and synthesized in the 1960’s. Almost three decades later, cannabinoid receptors in the brain were described and cloned and the endogenous cannabinoids were isolated and identified. As a result of these discoveries the interest in cannabis research has remarkably increased. For instance, the number of publications using the key word “brain”, compiled by the ISI Web of Knowledge, increased 26 times from 1960-1964 to 2000-2004, while the number of publications about `cannabis’ increased 78.5 times during the same period. As a consequence, the research on the use of cannabis as medicine has been renewed.”

” A high dose of D9-tetrahydrocannabinol, the main Cannabis sativa (cannabis) component, induces anxiety and psychotic-like symptoms in healthy volunteers. These effects of D9-tetrahydrocannabinol are significantly reduced by cannabidiol (CBD), a cannabis constituent which is devoid of the typical effects of the plant. This observation led us to suspect that CBD could have anxiolytic and/or antipsychotic actions. Studies in animal models and in healthy volunteers clearly suggest an anxiolytic-like effect of CBD. The antipsychotic-like properties of CBD have been investigated in animal models using behavioral and neurochemical techniques which suggested that CBD has a pharmacological profile similar to that of atypical antipsychotic drugs. The results of two studies on healthy volunteers using perception of binocular depth inversion and ketamine-induced psychotic symptoms supported the proposal of the antipsychotic-like properties of CBD. In addition, open case reports of schizophrenic patients treated with CBD and a preliminary report of a controlled clinical trial comparing CBD with an atypical antipsychotic drug have confirmed that this cannabinoid can be a safe and well-tolerated alternative treatment for schizophrenia. Future studies of CBD in other psychotic conditions such as bipolar disorder and comparative studies of its antipsychotic effects with those produced by clozapine in schizophrenic patients are clearly indicated.”

“In conclusion, results from pre-clinical and clinical studies suggest that CBD is an effective, safe and well-tolerated alternative treatment for schizophrenic patients. Future trials of this cannabinoid in other psychotic conditions such as bipolar disorder (50) and comparative studies of its antipsychotic effects with those produced by clozapine in schizophrenic patients are clearly needed.”

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2006000400001&lng=en&nrm=iso&tlng=en

The endocannabinoid system as a target for the treatment of cannabis dependence

“Cannabinoid replacement therapy and CB1 receptor antagonism are two potential treatments for cannabis dependence that are currently under investigation. However, abuse liability and adverse side effects may limit the scope of each of these approaches. A potential alternative stems from the recognition that (i) frequent cannabis use may cause an adaptive downregulation of brain endocannabinoid signaling, and (ii) that genetic traits that favor hyperactivity of the endocannabinoid system in humans may decrease susceptibility to cannabis dependence. These findings suggest in turn that pharmacological agents that elevate brain levels of the endocannabinoid neurotransmitters, anandamide and 2-arachidonoylglycerol (2-AG), might alleviate cannabis withdrawal and dependence. One such agent, the fatty-acid amide hydrolase (FAAH) inhibitor URB597, selectively increases anandamide levels in the brain of rodents and primates. Preclinical studies show that URB597 produces analgesic, anxiolytic-like and antidepressant-like effects in rodents, which are not accompanied by overt signs of abuse liability. In this article, we review evidence suggesting that (i) cannabis influences brain endocannabinoid signaling; and (ii) FAAH inhibitors such as URB597 might offer a possible therapeutic avenue for the treatment of cannabis withdrawal.”

“Direct modulation of CB1receptors as a treatment for cannabis dependence”

“Even though, as we have seen above, direct activation of CB1 receptors may yield variable behavioral responses, low-dosage oral Δ9-THC has shown promise in the management of human cannabis withdrawal. The rationale for this approach is that controlled replacement of Δ9-THC for smoked cannabis may reduce the severity of withdrawal symptoms and allow a dependent individual to remain abstinent. Additionally, given that dependent subjects are experienced with cannabis, and Δ9-THC is administered at low doses, administration of the latter is unlikely to result in the anxiety responses observed with inexperienced users or high dosages. Consistent with this idea, two independent clinical studies have shown that low-dose oral Δ9-THC attenuates withdrawal symptom scores and is minimally intoxicating in non-treatment seeking daily cannabis users.””

“Several therapeutic modalities are currently being considered to treat cannabis dependence, including activation or deactivation of CB1receptors. While these stategies show promise in measures of cannabis withdrawal and abstinence, they may also create problems of abuse liability or adverse emotional effects. An additional approach might be to enhance endogenous anandamide signaling using agents that attenuate the deactivation of this endocannabinoid transmitter.”

“Increasing anandamide signaling with deactivation inhibitors, such as the FAAH blocker URB597, potentiates stress coping behaviors in animals, indicating a role for anandamide in physiopathological context of stress-related responses. Similarly, elevation of anandamide in specific brain regions opposes the anhedonic effects of stress and promotes normal positive responses to pleasurable stimuli in rodents. It is reasonable to hypothesize that these effects could act to blunt the negative affect and stress, which is common during cannabis withdrawal, thus allowing cannabis dependent individuals to successfully abstain from drug use.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2647947/

The molecular connections between the cannabinoid system and endometriosis.

Abstract

“The endocannabinoid system consists of an array of endogenously produced bioactive lipids that activate cannabinoid 1 (CB1) and 2 (CB2) receptors. Alterations of this system have been described in almost every category of disease. These changes can be protective or maladaptive, making the endocannabinoid network an attractive therapeutic target. Little is known about the potential role of endocannabinoids in endometriosis development although this is a topic worthy of further investigation since endocannabinoid modulators have recently been shown to affect specific mechanisms critical to endometriosis establishment and maintenance. A literature review was herein performed with the aim of defining the regulation and function of the endocannabinoid signaling in in vitro and animal models of endometriosis. The components of the endocannabinoid system, CB1 and CB2 receptors and the enzymes N-acylphosphatidylethanolamine-phospholipase D and fatty acid amide hydrolase are differentially regulated throughout the menstrual cycle in the endometrium and are expressed in deep endometriotic nodules and in sensory and sympathetic neurons innervating the lesions. Selective cannabinoid receptor agonists, such as WIN 55212-2, appear to have a favorable action in limiting cell proliferation and in controlling pain symptoms. Conversely, endometrial cell migration tends to be stimulated by receptor agonists. The phosphatidylinositol 3-kinase/Akt and extracellular signal-regulated kinase 1/2 pathways seem to be involved in these processes. However, the underlying mechanisms of action are only just beginning to unfold. Given the complexity of the system, further studies are needed to clarify whether the endocannabinoid system might represent a promising target for endometriosis.”

http://www.ncbi.nlm.nih.gov/pubmed/22923487

[The endogenous cannabinoid system. Therapeutic implications for neurologic and psychiatric disorders].

Abstract

“For about 5,000 years, cannabis has been used as a therapeutic agent. There has been growing interest in the medical use of cannabinoids. This is based on the discovery that cannabinoids act with specific receptors (CB1 and CB2). CB1 receptors are located in specific brain areas (e.g. cerebellum, basal ganglia, and hippocampus) and CB2 receptors on cells of the immune system. Endogenous ligands of the cannabinoid receptors were also discovered (e.g. anandamids). Many physiologic processes are modulated by the two subtypes of cannabinoid receptor: motor functions, memory, appetite, and pain. These innovative neurobiologic/pharmacologic findings could possibly lead to the use of synthetic and natural cannabinoids as therapeutic agents in various areas. Until now, cannabinoids were used as antiemetic agents in chemotherapy-induced emesis and in patients with HIV-wasting syndrome. Evidence suggests that cannabinoids may prove useful in some other diseases, e.g. movement disorders such as Gilles de la Tourette’s syndrome, multiple sclerosis, and pain. These new findings also explain the acute adverse effects following cannabis use.”

http://www.ncbi.nlm.nih.gov/pubmed/15776259