Industrial hemp decreases intestinal motility stronger than indian hemp in mice.

“Indian hemp has shown beneficial effects in various gastrointestinal conditions but it is not widely accepted due to high content of tetrahydrocannabinol resulting in unwanted psychotropic effects.

Since industrial hemp rich in cannabidiol lacks psychotropic effects the aim of research was to study the effects of industrial hemp on intestinal motility.

Although not completely without psychotropic activity cannabidiol could be a potential replacement for tetrahydrocannabinol.

Since industrial hemp infuse rich in cannabidiol reduces intestinal motility in healthy mice cannabidiol should be further evaluated for the treatment of intestinal hypermotility.”

http://www.ncbi.nlm.nih.gov/pubmed/23467947

Endocannabinoids and immune regulation

Logo of nihpa

“Cannabinoid pharmacology has made important advances in recent years after the discovery of the cannabinoid receptors.

These discoveries have added to our understanding of exogenous and endogenous cannabinoid signaling along with exploring the various pathways of their biosynthesis, molecular structure, inactivation, and anatomical distribution of their receptors throughout the body.

The endocannabinoid system is involved in immunoregulation and neuroprotection.

The discovery of cannabinoid receptors occurring naturally throughout the vertebrate body and the availability of highly selective and potent canabimimetics led to the identification of a naturally occurring lipid signaling system termed the endocannabinoid system.

Interestingly, the endocannabinoid system dates back very long in the evolution because it exists as an ancient plant signaling system regulating the plant immunity-related genes in response to infection and stress.

The main pharmacological functions of the endocannabinoid system include neuromodulation, controlling motor functions, cognition, emotional responses, homeostasis and motivation. However, in the periphery, this system is an important modulator of autonomic nervous system, the immune system and microcirculation.

There have been a number of recent studies which have demonstrated that the endocannabinoids have both inhibitory effects and stimulatory impact on the immune system and may be actually important in homeostasis or control of the immune reactions.

 The image of endocannabinoid system now appears to be of a modulatory complex which affects the physiological functions in peripheral tissues and can thus be considered as a potential therapeutic target in the future.
Thus, manipulation of endocannabinoids in vivo may constitute a novel treatment modality against inflammatory disorders.”

The therapeutic use of cannabinoids: Forensic aspects.

“Since 2013 in the Italian market has been introduced the Nabiximols, a drug containing two of the main active cannabinoids: Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). This drug has been approved in Italy in the treatment of Multiple Sclerosis (MS). It is an oral spray formulation and each puff of 100μl contains 2.7mg of Δ9-THC and 2.5mg of CBD.

In the present study we analyzed urine and blood samples collected from a group of 20 patients treated with Nabiximols in order to evaluate: blood Δ9-THC concentrations in relation to the dose administered and the duration of treatment and the potentiality of this medication to be used for drug habit.

The study was conducted on a sample group of patients affected by MS, of both sexes, age: 49-61 years, treated with Nabiximols for short (28 days) or long-term.

The results of our study allow affirming that it is unlikely to use this medication for drug habit or to sale it in the black market because of the low blood concentrations available and of its high costs.

These statements were confirmed by: (a) the low Δ9-THC concentrations in the pharmaceutical formulation; (b) the low blood concentrations produced by Nabiximols administration, more than 10 times smaller than the blood concentrations known to produce psychotropic effects; (c) the presence of CBD (Δ9-THC natural antagonist); (d) the route of administration (inhaled, not smoked).”

http://www.ncbi.nlm.nih.gov/pubmed/27038587

Marijuana-derived Δ-9-tetrahydrocannabinol suppresses Th1/Th17 cell-mediated delayed-type hypersensitivity through microRNA regulation.

“∆9-Tetrahydrocannabinol (THC) is one of the major bioactive cannabinoids derived from the Cannabis sativa plant and is known for its anti-inflammatory properties. Delayed-type hypersensitivity (DTH) is driven by proinflammatory T helper cells including the classic inflammatory Th1 lineage as well as the more recently discovered Th17 lineage. In the current study, we investigated whether THC can alter the induction of Th1/Th17 cells involved in mBSA-induced DTH response. THC treatment (20 mg/kg) of C57BL/6 mice with DTH caused decreased swelling and infiltration of immune cells at the site of antigen rechallenge. Additionally, THC treatment decreased lymphocyte activation as well as Th1/Th17 lineage commitment, including reduced lineage-specific transcription factors and cytokines. Interestingly, while DTH caused an overexpression of miR-21, which increases Th17 differentiation via SMAD7 inhibition, and downregulation of miR-29b, an IFN-γ inhibitor, THC treatment reversed this microRNA (miR) dysregulation. Furthermore, when we transfected primary cells from DTH mice with miR-21 inhibitor or miR-29b mimic, as seen with THC treatment, the expression of target gene message was directly impacted increasing SMAD7 and decreasing IFN-γ expression, respectively. In summary, the current study suggests that THC treatment during DTH response can simultaneously inhibit Th1/Th17 activation via regulation of microRNA (miRNA) expression.

KEY MESSAGES:

• THC treatment inhibits simultaneous Th1/Th17 driven inflammation. • THC treatment corrects DTH-mediated microRNA dysregulation. • THC treatment regulates proinflammatory cytokines and transcription factors.”

http://www.ncbi.nlm.nih.gov/pubmed/27038180

Beyond the CB1 Receptor: Is Cannabidiol the Answer for Disorders of Motivation?

“The Cannabis sativa plant has been used to treat various physiological and psychiatric conditions for millennia.

Current research is focused on isolating potentially therapeutic chemical constituents from the plant for use in the treatment of many central nervous system disorders.

Of particular interest is the primary nonpsychoactive constituent cannabidiol (CBD).

Unlike Δ9-tetrahydrocannabinol (THC), CBD does not act through the cannabinoid type 1 (CB1) receptor but has many other receptor targets that may play a role in psychiatric disorders.

Here we review preclinical and clinical data outlining the therapeutic efficacy of CBD for the treatment of motivational disorders such as drug addiction, anxiety, and depression.

Across studies, findings suggest promising treatment effects and potentially overlapping mechanisms of action for CBD in these disorders and indicate the need for further systematic investigation of the viability of CBD as a psychiatric pharmacotherapy.”

http://www.ncbi.nlm.nih.gov/pubmed/27023732

The role of carbon monoxide on the anti-nociceptive effects and expression of cannabinoid 2 receptors during painful diabetic neuropathy in mice.

“The activation of cannabinoid 2 receptors (CB2R) attenuates chronic pain, but the role played by carbon monoxide synthesized by the inducible heme oxygenase 1 (HO-1) on the anti-nociceptive effects produced by a selective CB2R agonist, JWH-015, during painful diabetic neuropathy remains unknown.

The activation of HO-1 enhanced the anti-nociceptive effects of JWH-015 in diabetic mice, suggesting that coadministration of JWH-015 with CORM-2 or CoPP might be an interesting approach for the treatment of painful diabetic neuropathy in mice.”

http://www.ncbi.nlm.nih.gov/pubmed/27020787

Prohedonic Effect of Cannabidiol in a Rat Model of Depression.

“Accumulating evidence suggests that cannabidiol (CBD) may be an effective and safe anxiolytic agent and potentially also an antidepressant.

 These findings extend the limited knowledge on the antidepressant effect of CBD, now shown for the first time in a genetic animal model of depression. These results suggest that CBD may be beneficial for the treatment of clinical depression and other states with prominent anhedonia.”

http://www.ncbi.nlm.nih.gov/pubmed/27010632

http://www.thctotalhealthcare.com/category/depression-2/

Techniques and technologies for the bioanalysis of Sativex®, metabolites and related compounds.

“Sativex® is an oromucosal spray indicated for the treatment of moderate-to-severe spasticity in multiple sclerosis and is also an effective analgesic for advanced cancer patients.

Sativex contains Δ9-tetrahydrocannabinol (THC) and cannabidiol in an approximately 1:1 ratio.

The increasing prevalence of medicinal cannabis products highlights the importance of reliable bioanalysis and re-evaluation of the interpretation of positive test results for THC, as legal implications may arise in workplace, roadside and sports drug testing situations. This article summarizes published research on the bioanalysis of THC and cannabidiol, with particular focus on Sativex.”

http://www.ncbi.nlm.nih.gov/pubmed/27005853

Medical marijuana use in head and neck squamous cell carcinoma patients treated with radiotherapy.

Supportive Care in Cancer

“The purpose of the study was to better understand why patients with history of head and neck cancer (HNC) treated with radiotherapy are using medical marijuana (MM).

RESULTS:

There was a 100 % response rate. Median time from treatment was 45 months (21-136 months). Most patients smoked marijuana (12 patients), while others reported ingestion (4 patients), vaporizing (3 patients), and use of homemade concentrated oil (1 patient). Six patients reported prior recreational marijuana use before diagnosis. MM provided benefit in altered sense, weight maintenance, depression, pain, appetite, dysphagia, xerostomia, muscle spasm, and sticky saliva.

CONCLUSIONS:

HNC patients report MM use to help with long-term side effects of radiotherapy.”

http://www.ncbi.nlm.nih.gov/pubmed/27005465

https://link.springer.com/article/10.1007%2Fs00520-016-3180-8

The effect of cannabinoids on the stretch reflex in multiple sclerosis spasticity.

“The aim of this observational study was to assess the efficacy of a tetrahydrocannabinol-cannabidiol (THC : CBD) oromucosal spray on spasticity using the stretch reflex in patients with multiple sclerosis (MS).

Numeric rating scale (NRS) for spasticity, modified Ashworth scale (MAS), and the stretch reflex were assessed before and during treatment in 57 MS patients with spasticity eligible for THC : CBD treatment.

A significant reduction in stretch reflex amplitude as well as significant reductions of NRS and MAS scores were observed. There was a low concordance between the three measures (stretch reflex, NRS, and MAS), likely related to the different aspects of muscle hypertonia assessed.

Stretch reflex responders were taking a significantly higher number of puffs, whereas no differences were found in the responders by the other scales, suggesting that a higher dosage would add benefit if tolerated.

The present study confirms the efficacy of cannabinoids in reducing spasticity in patients with MS, suggesting a higher sensitivity and specificity of the stretch reflex compared with other measures. As an objective and quantitative measure of spasticity, the stretch reflex is particularly useful to assess the effects of cannabinoids on spinal excitability and may play a role in future pharmacological studies.”

http://www.ncbi.nlm.nih.gov/pubmed/27003093