Potentiation of the antitumor activity of adriamycin against osteosarcoma by cannabinoid WIN-55,212-2

Logo of onclett

“Osteosarcoma is the most frequent primary malignant bone tumor that occurs in children and adolescents. Osteosarcoma is a bone malignancy that predominantly affects children and adolescents, and exhibits high invasion and metastasis rates.

Although adriamycin (ADM) is an effective benchmark agent for the management of osteosarcoma, it also results in harmful side-effects including toxicity and chemoresistance that substantially affect the quality of life of patients. Therefore, novel therapeutic approaches and drugs must be sought for the treatment of osteosarcoma.

Natural products which have potential antitumor activities have become a focus of attention for study in previous years. Cannabinoids, the active components naturally derived from the marijuana plant Cannabis sativa L., have been reported as potential antitumor drugs based on their ability to limit inflammation, cell proliferation and cell survival.

To date, several cannabinoids have been identified and characterized, including Δ(9)-tetrahydrocannabinol (THC), cannabidiol, cannabinol (CBN) and anandamide, as well as synthetic cannabinoids, including WIN-55,212-2, JWH-133 and (R)-methanandamide.

In the early 1970s, THC and CBN were shown to inhibit tumor growth in Lewis lung carcinoma. Subsequently, cannabinoids were found to induce apoptosis and inhibit the proliferation of various cancer cells, including those of glioma and lymphoma, and prostate, breast, skin and pancreatic cancer…

In conclusion, the present study indicated that cannabinoid WIN-55,212-2 is antiproliferative, antimetastatic and antiangiogenic against MG-63 cells in vitro, and presented evidence that cannabinoid WIN-55,212-2 may result in synergistic antitumor action in combination with ADM against osteosarcoma.

These findings may offer a novel strategy for the treatment of osteosarcoma.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4580018/

Liver’s cannabinoid receptors could be targeted to combat liver cancer in some patients

News Medical - Life Sciences & Medicine

“A new study reveals that the liver’s cannabinoid receptors could be targeted to fight liver cancer in some patients; and it offers a way to predict what treatments have the best chance of working.

The body’s own marijuana-like substances, — called endocannabinoids — are known to increase the biosynthesis of fatty acids in the liver by activating cannabinoid type 1 receptors (CB1). CB1 receptors can be found in the brain, lungs, liver and kidney, and they are involved in a number of physiological processes, including mood, appetite, pain sensation and memory.

The study found that the expression of these receptors increased in cancerous liver samples, when compared with cancer-free samples. This suggests that drugs that block CB1 receptors may be effective against HCC.

“Although such drugs were found to cause unwanted psychiatric side effects, non brain-penetrant CB1 receptor antagonists devoid of such side effects — but retaining therapeutic efficacy via peripheral CB1 receptors — are currently being developed,” says study co-author George Kunos, scientific director at the U.S. National Institute on Alcohol Abuse and Alcoholism (NIAAA).”

http://www.news-medical.net/news/20151123/Livers-cannabinoid-receptors-could-be-targeted-to-combat-liver-cancer-in-some-patients.aspx

The endocannabinoid system as a target for the treatment of neuronal damage.

“Cannabinoids have been proposed as clinically promising neuroprotective molecules, based on their capability to normalize glutamate homeostasis, reducing excitotoxicity, to inhibit calcium influx, lowering intracellular levels and the subsequent activation of calcium-dependent destructive pathways, and to reduce the generation of reactive oxygen intermediates or to limit their toxicity, decreasing oxidative injury.

Cannabinoids are also able to decrease local inflammatory events by acting on glial processes that regulate neuronal survival, and to restore blood supply by reducing vasocontriction produced by several endothelium-derived factors.

Treatment of neurodegenerative disorders is a challenge for neuroscientists and neurologists. Unhappily, the efficacy of available medicines is still poor and there is an urgent need for novel neuroprotective agents. Cannabinoids can serve this purpose given their recognized antiexcitotoxic, antioxidant and anti-inflammatory properties.”

http://www.ncbi.nlm.nih.gov/pubmed/20230193

Long-Term Data of Efficacy, Safety and Tolerability in a Real Life Setting of THC/CBD Oromucosal Spray-Treated Multiple Sclerosis Patients.

“Delta-9-tetrahydrocannabinol (THC)/cannabidiol (CBD) oromucosal spray was approved as add-on therapy for spasticity in patients with Multiple Sclerosis (MS).

We showed our forty-weeks post-marketing experience regarding efficacy and safety of THC/CBD spray in an Italian cohort of 102 MS patients…

In conclusion, treatment with THC/CBD spray appears to be a valid answer to some of the unmet needs in MS patients, such as spasticity and other refractory-to-treatment symptoms. “

http://www.ncbi.nlm.nih.gov/pubmed/26608223

http://www.thctotalhealthcare.com/category/multiple-sclerosis-ms/

A Sativex(®) -like combination of phytocannabinoids as a disease-modifying therapy in a viral model of multiple sclerosis.

“Sativex(®) is an oromucosal spray, containing equivalent amounts of Δ(9) -tetrahydrocannabinol (Δ(9) -THC) and cannabidiol (CBD)-botanical drug substance (BDS), which has been approved for the treatment of spasticity and pain associated to multiple sclerosis (MS).

In this study, we investigated whether Sativex may also serve as a disease-modifying agent in the Theiler’s murine encephalomyelitis virus-induced demyelinating disease model of MS.

The data support the therapeutic potential of Sativex to slow MS progression and its relevance in CNS repair.”

http://www.ncbi.nlm.nih.gov/pubmed/25857324

The disease-modifying effects of a Sativex-like combination of phytocannabinoids in mice with experimental autoimmune encephalomyelitis are preferentially due to Δ9-tetrahydrocannabinol acting through CB1 receptors.

“Sativex®, an equimolecular combination of Δ9-tetrahydrocannabinol-botanical drug substance (Δ9-THC-BDS) and cannabidiol-botanical drug substance (CBD-BDS), is a licensed medicine that may be prescribed for alleviating specific symptoms of multiple sclerosis (MS) such as spasticity and pain.

However, further evidence suggest that it could be also active as disease-modifying therapy given the immunomodulatory, anti-inflammatory and cytoprotective properties of their two major components.

In this study, we investigated this potential in the experimental autoimmune encephalitis (EAE) model of MS in mice.

We compared the effect of a Sativex-like combination of Δ9-THC-BDS (10mg/kg) and CBD-BDS (10mg/kg) with Δ9-THC-BDS (20mg/kg) or CBD-BDS (20mg/kg) administered separately by intraperitoneal administration to EAE mice.

Treatments were initiated at the time that symptoms appear and continued up to the first relapse of the disease.

The results show that the treatment with a Sativex-like combination significantly improved the neurological deficits typical of EAE mice, in parallel with a reduction in the number and extent of cell aggregates present in the spinal cord which derived from cell infiltration to the CNS.

These effects were completely reproduced by the treatment with Δ9-THC-BDS alone, but not by CBD-BDS alone which only delayed the onset of the disease without improving disease progression and reducing the cell infiltrates in the spinal cord.

Next, we investigated the potential targets involved in the effects of Δ9-THC-BDS by selectively blocking CB1 or PPAR-γ receptors, and we found a complete reversion of neurological benefits and the reduction in cell aggregates only with rimonabant, a selective CB1 receptor antagonist.

Collectively, our data support the therapeutic potential of Sativex as a phytocannabinoid formulation capable of attenuating EAE progression, and that the active compound was Δ9-THC-BDS acting through CB1 receptors.”

Characterization of Lignanamides from Hemp (Cannabis sativa L. ) Seed and their Antioxidant and Acetylcholinesterase Inhibitory Activities.

Image result for J Agric Food Chem.

“Hempseed is known for its content in fatty acids, proteins and fiber, which contribute to its nutritional value.

Here we studied the secondary metabolites of hempseed aiming at identifying bioactive compounds that could contribute to its health benefits.

This investigation led to the isolation of four new lignanamides cannabisin M, 2, cannabisin N, 5, cannabisin O, 8 and 3,3′-demethyl-heliotropamide, 10, together with ten known lignanamides, among which 4 was identified for the first time from hempseed.

Structures were established on the basis of NMR, HR-MS, UV, IR as well as by comparison with the literature data.

Lignanamides 2, 7, 9-14 showed good antioxidant activity among which 7, 10 and 13 also inhibited acetylcholinesterase in vitro.

The new identified compounds in this study added to the diversity of hempseed composition and the bioassays implied that hempseed, with lignanamides as nutrients, may be a good source of bioactive and protective compounds.”  http://www.ncbi.nlm.nih.gov/pubmed/26585089

“Alzheimer’s Disease (AD) is the most common single cause of dementia in our ageing society. On full assessment and diagnosis of AD, initiation of an AChe inhibitor is recommended as early as possible, it is important that AChe inhibitor therapy is considered for patients with mild to moderate AD.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2014378/

 “The Effects of Hempseed Meal Intake and Linoleic Acid on Drosophila Models of Neurodegenerative Diseases and Hypercholesterolemia. Our results indicate that hempseed meal (HSM) and linoleic acid are potential candidates for the treatment of Alzheimer’s disease (AD) and cardiovascular disease. These results show that HSM may prove of great utility as a health food, with potential for the prevention of AD and cardiovascular disease.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933972/

Controlled release tablet formulation containing natural δ9 tetrahydrocannabinol.

“Cannabinoids are increasingly being used in the treatment of chemotherapy induced nausea and vomiting (CINV) because of their action on the cannabinoid receptors, CB1 and CB2.

The currently marketed capsule formulations (sesame oil based and crystalline powder) are required to be administered frequently to maintain therapeutic levels, which leads to non-compliance.

In the present study, oral controlled release tablet formulations of Δ9- tetrahydrocannabinol (THC) were prepared using the lipids Precirol® and Compritrol®. Release profiles using THC-lipid matrices and/or with the lipids in the external phase (blend) were evaluated…

The overall results demonstrate the feasibility of preparing oral THC tablets for once a day administration which can improve CINV management.”

http://www.ncbi.nlm.nih.gov/pubmed/26585693

Cannabinoids in the management of chronic pain: a front line clinical perspective.

“Chronic pain is an escalating public health problem. Currently available treatments are inadequate to control chronic pain conditions, and there is a critical need for novel treatments.

Over a half century of elegant preclinical research has identified the presence of a sophisticated endocannabinoid system that is part of our natural pain and immune defense network.

Convergent work has supported the significant potential to exploit this system to decrease pain and inflammation.

Although the clinical research remains in its infancy, recent systematic reviews have found that 25 of 30 randomized controlled trials have demonstrated a significant analgesic effect.

The authors concluded that cannabinoids currently available for clinical use demonstrate a modest analgesic effect and are safe for the management of chronic pain.

There is a critical need for more translational research so that the excellent work of Dr. Itai Bab and our basic science colleagues around the world can move forward in providing novel cannabinoid-based medicines.

This should include more potent analgesics that are limited in side effects with several routes of delivery. Our patients deserve additional agents for pain control with a novel mechanism of action, and cannabinoids are the new frontier.”

http://www.ncbi.nlm.nih.gov/pubmed/26581068

Pharmacological benefits of selective modulation of cannabinoid receptor type 2 (CB2) in experimental Alzheimer’s disease.

“Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that pervasively affects the population across the world.

Currently, there is no effective treatment available for this and existing drugs merely slow the progression of cognitive function decline. Thus, massive effort is required to find an intended therapeutic target to overcome this condition.

The present study has been framed to investigate the ameliorative role of selective modulator of cannabinoid receptor type 2 (CB2), 1-phenylisatin in experimental AD condition…

Hence, this study concludes that CB2 receptor modulation can be a potential therapeutic target for the management of AD.”

http://www.ncbi.nlm.nih.gov/pubmed/26577751