Activation of cannabinoid receptors prevents antigen-induced asthma-like reaction in guinea pigs.

“In this study we evaluated the effects of the CB1/CB2 cannabinoid receptor agonist on antigen-induced asthma-like reaction in sensitized guinea pigs…

These findings suggest that targeting cannabinoid receptors could be a novel preventative therapeutic strategy in asthmatic patients.”

http://www.ncbi.nlm.nih.gov/pubmed/18266975

Evaluation of Serum Cytokines Levels and the Role of Cannabidiol Treatment in Animal Model of Asthma.

Image result for hindawi

“Asthma represents a public health problem and traditionally is classified as an atopic disease, where the allergen can induce clinical airway inflammation, bronchial hyperresponsiveness, and reversible obstruction of airways.

Studies have demonstrated the presence of T-helper 2 lymphocytes in the lung of patients with asthma. These cells are involved in cytokine production that regulates immunoglobulin synthesis.

Recognizing that T cell interaction with antigens/allergens is key to the development of inflammatory diseases, the aim of this study is to evaluate the anti-inflammatory potential of cannabidiol (CBD) in this setting.

CBD treatment was able to decrease the serum levels of all analyzed cytokines except for IL-10 levels.

CBD seems to be a potential new drug to modulate inflammatory response in asthma.” http://www.ncbi.nlm.nih.gov/pubmed/26101464

“In conclusion, we here demonstrate that the administration of CBD in an animal model of asthma could blunt the serum cytokine response to OVA in sensitized animals. These effects suggest a potential for a new asthma treatment since CBD controls the exaggerated inflammatory response observed in this model.” https://www.hindawi.com/journals/mi/2015/538670/

Medical Marijuana for Treatment of Chronic Pain and Other Medical and Psychiatric Problems: A Clinical Review.

“Use of marijuana for chronic pain, neuropathic pain, and spasticity due to multiple sclerosis is supported by high-quality evidence.

Several of these trials had positive results, suggesting that marijuana or cannabinoids may be efficacious for these indications.

CONCLUSIONS AND RELEVANCE:

Medical marijuana is used to treat a host of indications, a few of which have evidence to support treatment with marijuana and many that do not. Physicians should educate patients about medical marijuana to ensure that it is used appropriately and that patients will benefit from its use.”

http://www.ncbi.nlm.nih.gov/pubmed/26103031

Cannabinoids for Medical Use: A Systematic Review and Meta-analysis.

“Cannabis and cannabinoid drugs are widely used to treat disease or alleviate symptoms, but their efficacy for specific indications is not clear.

To conduct a systematic review of the benefits and adverse events (AEs) of cannabinoids.

There was moderate-quality evidence to support the use of cannabinoids for the treatment of chronic pain and spasticity. There was low-quality evidence suggesting that cannabinoids were associated with improvements in nausea and vomiting due to chemotherapy, weight gain in HIV infection, sleep disorders, and Tourette syndrome.

Cannabinoids were associated with an increased risk of short-term AEs. Common AEs included dizziness, dry mouth, nausea, fatigue, somnolence, euphoria, vomiting, disorientation, drowsiness, confusion, loss of balance, and hallucination.”

http://www.ncbi.nlm.nih.gov/pubmed/26103030

http://jama.jamanetwork.com/article.aspx?articleid=2338251

An ultra-low dose of tetrahydrocannabinol provides cardioprotection.

“Tetrahydrocannabinol (THC), the major psychoactive component of marijuana, is a cannabinoid agonist that exerts its effects by activating at least two specific receptors (CB1 and CB2) that belong to the seven transmembrane G-protein coupled receptor (GPCR) family.

Both CB1 and CB2 mRNA and proteins are present in the heart.

THC treatment was beneficial against hypoxia in neonatal cardiomyocytes in vitro.

We also observed a neuroprotective effect of an ultra low dose of THC when applied to mice before brain insults.

The present study was aimed to test and characterize the cardioprotective effects of a very low dose of THC…

All protocols of THC administration were found to be beneficial.

CONCLUSION:

A single ultra low dose of THC before ischemia is a safe and effective treatment that reduces myocardial ischemic damage.”

http://www.ncbi.nlm.nih.gov/pubmed/23537701

Cannabidiol, a nonpsychoactive Cannabis constituent, protects against myocardial ischemic reperfusion injury

Heart and Circulatory Physiology

“CANNABINOIDS ARE NATURAL and synthetic compounds structurally or pharmacologically related to the constituents of the plant Cannabis sativa or to the endogenous agonists (endocannabinoids) of the cannabinoid CB1 and CB2 receptors.

Cannabidiol (CBD) is a major cannabinoid constituent of Cannabis.

In contrast to tetrahydrocannabinol, CBD binds very weakly to CB1 and CB2 receptors. Contrary to most cannabinoids, CBD does not induce psychoactive or cognitive effects.

CBD has been shown to have anti-inflammatory properties. CBD (together with tetrahydrocannabinol) has been successfully tested in a few preliminary human trials related to autoimmune diseases…

Cannabidiol (CBD) is a major, nonpsychoactive Cannabis constituent with anti-inflammatory activity mediated by enhancing adenosine signaling.

Inasmuch as adenosine receptors are promising pharmaceutical targets for ischemic heart diseases, we tested the effect of CBD on ischemic rat hearts.

Our study shows that CBD induces a substantial in vivo cardioprotective effect from ischemia that is not observed ex vivo.

Inasmuch as CBD has previously been administered to humans without causing side effects, it may represent a promising novel treatment for myocardial ischemia.”

http://ajpheart.physiology.org/content/293/6/H3602

CB(2) cannabinoid receptor activation is cardioprotective in a mouse model of ischemia/reperfusion.

“Preventive treatment with cannabinoid agonists has been reported to reduce the infarct size in a mouse model of myocardial ischemia/reperfusion.

Here we investigated the possible cardioprotective effect of selective CB(2) cannabinoid receptor activation during ischemia.

Our data suggest that administration during ischemia reduces the infarct size in a mouse model of myocardial ischemia/reperfusion through a direct cardioprotective activity on cardiomyocytes and neutrophils.”

http://www.ncbi.nlm.nih.gov/pubmed/19162037

Cannabinoid system as a potential target for drug development in the treatment of cardiovascular disease.

“Although cannabinoids have been recreationally employed for thousands of years, it was not until the discovery of their specific receptors, in the early nineties, that the molecular basis of cannabinoid activity have began to be understood.

Growing research in this field has demonstrated not only that the action of cannabinoids in mammals is mainly receptor-mediated, but also that endogenous cannabinoids, such as anandamide, are produced, metabolized, and taken up across the cell membrane through a facilitated uptake process.

The exogenous administration of cannabinoids, as well as the manipulation of their endogenous levels have been related to a variety of effects, such as analgesia, (temporary) impairment of cognition and learning, appetite enhancement and peripheral vasodilation.

Hence, the endocannabinoid system, including the CB1 and CB2 receptors, the metabolizing enzyme fatty acid amide hydrolase and the anandamide transporter, is a potential target for the development of novel therapeutic drugs in the treatment of various conditions, such as pain, feeding disorders and vascular disease among others.

Although most of the research in the field of cannabinoids has been focused on their effects in the central nervous system, a growing line of evidence indicates that cannabinoids can also play a major role in the control of physiopathological functions in the cardiovascular system.

In this context, endocannabinoids have been proposed as novel possible hypotensive agents, and have been involved in the hypotension observed in septic shock, acute myocardial infarction and cirrhosis. In addition, a protective role for endocannabinoids has been described in ischemia.”

http://www.ncbi.nlm.nih.gov/pubmed/15320476

6B.09: EFFECT OF CANNABINOID RECEPTOR ACTIVATION ON ABERRANT MITOCHONDRIAL BIOENERGETICS IN HYPERTROPHIED CARDIAC MYOCYTES.

“We recently reported that activation of endocannabinoid receptors attenuates cardiac myocyte hypertrophy. Mitochondrial dysfunction has emerged as a critical determinant of aberrant myocyte energy production in cardiac hypertrophy. Thus, we determined endocannabinoid influence on mitochondrial function in the hypertrophied cardiac myocyte…

The cardioprotective actions of liganded cannabinoid receptors extend to the mitochondrial level. Therefore, a cannabinoid-based treatment for cardiac disease remains a potential therapeutic strategy that warrants further study.”

http://www.ncbi.nlm.nih.gov/pubmed/26102932

The endocannabinoid anandamide during lactation increases body fat content and CB1 receptor levels in mice adipose tissue.

“Type 1 cannabinoid receptors (CB1R) modulate energy balance; thus, their premature activation may result in altered physiology of tissues involved in such a function.

Activation of CB1R mainly occurs after binding to the endocannabinoid Anandamide (AEA).

The objective of this study was to evaluate the effects of AEA treatment during lactation on epididymal and body fat content, in addition to CB1R protein level at weaning.

This in vivo study shows for the first time that a progressive increase in body fat accumulation can be programmed in early stages of life by oral treatment with the endocannabinoid AEA, a fact associated with an increased amount of epididymal fat pads and a higher expression of CB1R in this tissue.”

http://www.ncbi.nlm.nih.gov/pubmed/26098446