Cannabis use and the course and outcome of major depressive disorder: A population based longitudinal study.

“Cannabis use has been reported to affect the course of various psychiatric disorders, however its effect on the course of major depressive disorder (MDD) is not yet clear. After adjusting for baseline confounding factors, no associations were found between cannabis use and suicidality, functionality and quality of life. We conclude that many of the associations between cannabis use and a more severe course of MDD do not seem to be attributed to cannabis use itself but to associated sociodemographic and clinical factors.” https://www.ncbi.nlm.nih.gov/pubmed/28214781]]>

Targeting the endocannabinoid/CB1 receptor system for treating obesity in Prader–Willi syndrome

“Extreme obesity is a core phenotypic feature of Prader–Willi syndrome (PWS). Among numerous metabolic regulators, the endocannabinoid (eCB) system is critically involved in controlling feeding, body weight, and energy metabolism, and a globally acting cannabinoid-1 receptor (CB1R) blockade reverses obesity both in animals and humans.

We studied eCB ‘tone’ in individuals with PWS and in the Magel2-null mouse model that recapitulates the major metabolic phenotypes of PWS and determined the efficacy of a peripherally restricted CB1R antagonist, JD5037 in treating obesity in these mice.

 Dysregulation of the eCB/CB1R system may contribute to hyperphagia and obesity in Magel2-null mice and in individuals with PWS. Our results demonstrate that treatment with peripherally restricted CB1R antagonists may be an effective strategy for the management of severe obesity in PWS.
In conclusion, the current study provides the first evidence that the eCB system may contribute to severe obesity both in PWS children and adults and in an established mouse model for this syndrome. Our results confirm that the eCB system contributes to the metabolic phenotype associated with PWS. Moreover, specifically targeting the peripheral eCB system in obese Magel2-null mice was found to be as efficacious as in DIO animals, and, therefore, it may represent a novel approach to treating obesity and its complications in PWS. This would also provide the rationale for the development and clinical testing of peripherally restricted CB1R antagonists for treating obesity in PWS.”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123200/

“Cannabinoid-1 receptor (CB1R) blockers as medicines: beyond obesity and cardiometabolic disorders to substance abuse/drug addiction with CB1R neutral antagonists.” https://www.ncbi.nlm.nih.gov/pubmed/22335400

“The phytocannabinoid, Delta(9)-tetrahydrocannabivarin (THCV), can block cannabinoid CB(1) receptors” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931567/]]>

Cannabinoid Receptor 2 Signaling in Neurodegenerative Disorders: From Pathogenesis to a Promising Therapeutic Target.

Image result for Front Neurosci “As a consequence of an increasingly aging population, the number of people affected by neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease, is rapidly increasing. Although the etiology of these diseases has not been completely defined, common molecular mechanisms including neuroinflammation, excitotoxicity and mitochondrial dysfunction have been confirmed and can be targeted therapeutically. Moreover, recent studies have shown that endogenous cannabinoid signaling plays a number of modulatory roles throughout the central nervous system (CNS), including the neuroinflammation and neurogenesis. In particular, the up-regulation of type-2 cannabinoid (CB2) receptors has been found in a number of neurodegenerative disorders. Thus, the modulation of CB2 receptor signaling may represent a promising therapeutic target with minimal psychotropic effects that can be used to modulate endocannabinoid-based therapeutic approaches and to reduce neuronal degeneration. For these reasons this review will focus on the CB2 receptor as a promising pharmacological target in a number of neurodegenerative diseases.” https://www.ncbi.nlm.nih.gov/pubmed/28210207

“Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5020102/

“The influence of cannabinoids on generic traits of neurodegeneration.  Modulation of the endogenous cannabinoid system is emerging as a potentially viable option in the treatment of neurodegeneration. Endocannabinoid signalling has been found to be altered in many neurodegenerative disorders. To this end, pharmacological manipulation of the endogenous cannabinoid system, as well as application of phytocannabinoids and synthetic cannabinoids have been investigated. Through multiple lines of evidence, this evolutionarily conserved neurosignalling system has shown neuroprotective capabilities and is therefore a potential target for neurodegenerative disorders. This review details the mechanisms of neurodegeneration and highlights the beneficial effects of cannabinoid treatment.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954477/

]]>