Biphasic Effects of THC in Memory and Cognition.

“A generally undesired effect of cannabis smoking is a reversible disruption of short term memory induced by delta-9-tetrahydrocannabinol (THC), the primary psychoactive component of cannabis. However, this paradigm has been recently challenged by a group of scientists who have shown that THC is also able to improve neurological function in old animals when chronically administered at low concentrations. Moreover, recent studies demonstrated that THC paradoxically promotes hippocampal neurogenesis, prevents neurodegenerative process occurring in Alzheimer Disease, protects from inflammation-induced cognitive damage and restores memory and cognitive function in old mice. With the aim to reconcile these seemingly contradictory facts, the present work will show that such paradox can be explained within the framework of hormesis, defined as biphasic dose responses. ” https://www.ncbi.nlm.nih.gov/pubmed/29574698 https://onlinelibrary.wiley.com/doi/abs/10.1111/eci.12920]]>

Cannabidiol Reverses Deficits in Hippocampal LTP in a Model of Alzheimer's Disease.

“Here we demonstrate for the first time that cannabidiol (CBD) acts to protect synaptic plasticity in an in vitro model of Alzheimer’s disease (AD). The non-psycho active component of Cannabis sativa, CBD has previously been shown to protect against the neurotoxic effects of beta amyloid peptide (Aβ) in cell culture and cognitive behavioural models of neurodegeneration. Hippocampal long-term potentiation (LTP) is an activity dependent increase in synaptic efficacy often used to study cellular mechanisms related to memory. Here we show that acute application of soluble oligomeric beta amyloid peptide (Aβ1-42) associated with AD, attenuates LTP in the CA1 region of hippocampal slices from C57Bl/6 mice. Application of CBD alone did not alter LTP, however pre-treatment of slices with CBD rescued the Aβ1-42 mediated deficit in LTP. We found that the neuroprotective effects of CBD were not reversed by WAY100635, ZM241385 or AM251, demonstrating a lack of involvement of 5HT1A, adenosine (A2A) or Cannabinoid type 1 (CB1) receptors respectively. However in the presence of the PPARγ antagonist GW9662 the neuroprotective effect of CBD was prevented. Our data suggests that this major component of Cannabis sativa, which lacks psychoactivity may have therapeutic potential for the treatment of AD” https://www.ncbi.nlm.nih.gov/pubmed/29574668 https://link.springer.com/article/10.1007%2Fs11064-018-2513-z]]>

Glial expression of cannabinoid CB(2) receptors and fatty acid amide hydrolase are beta amyloid-linked events in Down's syndrome.

Neuroscience “Recent data suggest that the endocannabinoid system (ECS) may be involved in the glial response in different types of brain injury. Both acute and chronic insults seem to trigger a shift in the pattern of expression of some elements of this system from neuronal to glial. Specifically, data obtained in human brain tissue sections from Alzheimer’s disease patients showed that the expression of cannabinoid receptors of the CB(2) type is induced in activated microglial cells while fatty acid amide hydrolase (FAAH) expression is increased in reactive astrocytes. The present study was designed to determine the time-course of the shift from neuronal to glial induction in the expression of these proteins in Down‘s syndrome, sometimes referred to as a human model of Alzheimer-like beta-amyloid (Abeta) deposition. Here we present immunohistochemical evidence that both CB(2) receptors and FAAH enzyme are induced in Abeta plaque-associated microglia and astroglia, respectively, in Down‘s syndrome. These results suggest that the induction of these elements of the ECS contributes to, or is a result of, amyloid deposition and subsequent plaque formation. In addition, they confirm a striking differential pattern of distribution of FAAH and CB(2) receptors.” https://www.ncbi.nlm.nih.gov/pubmed/18068305 https://www.sciencedirect.com/science/article/abs/pii/S0306452207012924
]]>