Analysis of Natural Product Regulation of Cannabinoid Receptors in the treatment of Human Disease.

“The organized tightly regulated signaling relays engaged by the cannabinoid receptors (CBs) and their ligands, G proteins and other effectors, together constitute the endocannabinoid system (ECS). This system governs many biological functions including cell proliferation, regulation of ion transport and neuronal messaging. This review will firstly examine the physiology of the ECS, briefly discussing some anomalies in the relay of the ECS signaling as these are consequently linked to maladies of global concern including neurological disorders, cardiovascular disease and cancer. While endogenous ligands are crucial for dispatching messages through the ECS, there are also commonalities in binding affinities with copious exogenous ligands, both natural and synthetic. Therefore, this review provides a comparative analysis of both types of exogenous ligands with emphasis on natural products given their putative safer efficacy and the role of Δ9-tetrahydrocannabinol (Δ9-THC) in uncovering the ECS. Efficacy is congruent to both types of compounds but noteworthy is the effect of a combination therapy to achieve efficacy without the unideal side-effects. An example is Sativex that displayed promise in treating Huntington’s disease (HD) in preclinical models allowing for its transition to current clinical investigation. Despite the in vitro and preclinical efficacy of Δ9-THC to treat neurodegenerative ailments, its psychotropic effects limit its clinical applicability to treating feeding disorders. We therefore propose further investigation of other compounds and their combinations such as the triterpene, α,β-amyrin that exhibited greater binding affinity to CB1 than CB2 and was more potent than Δ9-THC and the N-alkylamides that exhibited CB2 selective affinity, the latter can be explored towards peripherally exclusive ECS modulation. The synthetic CB1 antagonist, Rimonabant was pulled from market for the treatment of diabetes, however its analogue SR144528 maybe an ideal lead molecule towards this end and HU-210 and Org27569 are also promising synthetic small molecules.” https://www.ncbi.nlm.nih.gov/pubmed/28583800 http://www.sciencedirect.com/science/article/pii/S0163725817301511]]>

Study shows non-hallucinogenic cannabinoids are effective anti-cancer drugs

“New research has shown that the non-hallucinogenic components of cannabis could act as effective anti-cancer agents. The anti-cancer properties of tetrahydrocannabinol (THC), the primary hallucinogenic component of cannabis, has been recognised for many years, but research into similar cannabis-derived compounds, known as cannabinoids, has been limited. The study was carried out by a team at St George’s, University of London. It has been published in the journal Anticancer Research. The team, led by Dr Wai Liu and colleagues carried out laboratory investigations using a number of cannabinoids, either alone or in combination with each other, to measure their anti-cancer actions in relation to leukaemia. Of six cannabinoids studied, each demonstrated anti-cancer properties as effective as those seen in THC. Importantly, they had an increased effect on cancer cells when combined with each other. Dr Liu said: “This study is a critical step in unpicking the mysteries of cannabis as a source of medicine. The cannabinoids examined have minimal, if any, hallucinogenic side effects, and their properties as anti-cancer agents are promising. “These agents are able to interfere with the development of cancerous cells, stopping them in their tracks and preventing them from growing. In some cases, by using specific dosage patterns, they can destroy cancer cells on their own. “Used in combination with existing treatment, we could discover some highly effective strategies for tackling cancer. Significantly, these compounds are inexpensive to produce and making better use of their unique properties could result in much more cost effective anti-cancer drugs in future.” The study examined two forms of cannabidiol (CBD), two forms of cannabigerol (CBG) and two forms of cannabigevarin (CBGV). These represent the most common cannabinoids found in the cannabis plant apart from THC.” https://www.sgul.ac.uk/alumni/magazine/study-shows-non-hallucinogenic-cannabinoids-are-effective-anti-cancer-drugs

“Enhancing the Activity of Cannabidiol and Other Cannabinoids In Vitro Through Modifications to Drug Combinations and Treatment Schedules”  http://ar.iiarjournals.org/content/33/10/4373.abstract

“Non-hallucinogenic cannabinoids are effective anti-cancer drugs” https://www.sciencedaily.com/releases/2013/10/131014094105.htm
“Cannabinoids used in sequence with chemotherapy are a more effective treatment for cancer. New research has confirmed that cannabinoids – the active chemicals in cannabis – are effective in killing leukaemia cells, particularly when used in combination with chemotherapy treatments.” https://www.sgul.ac.uk/news/news-archive/cannabinoids-used-in-sequence-with-chemotherapy-are-a-more-effective-treatment-for-cancer
 
“Anticancer effects of phytocannabinoids used with chemotherapy in leukaemia cells can be improved by altering the sequence of their administration.” https://www.ncbi.nlm.nih.gov/pubmed/28560402
]]>

Anticancer effects of phytocannabinoids used with chemotherapy in leukaemia cells can be improved by altering the sequence of their administration.

Journal Cover “Phytocannabinoids possess anticancer activity when used alone, and a number have also been shown to combine favourably with each other in vitro in leukaemia cells to generate improved activity. We have investigated the effect of pairing cannabinoids and assessed their anticancer activity in cell line models. Those most effective were then used with the common anti-leukaemia drugs cytarabine and vincristine, and the effects of this combination therapy on cell death studied in vitro. Results show a number of cannabinoids could be paired together to generate an effect superior to that achieved if the components were used individually. For example, in HL60 cells, the IC50 values at 48 h for cannabidiol (CBD) and tetrahydrocannabinol (THC) when used alone were 8 and 13 µM, respectively; however, if used together, it was 4 µM. Median-effect analysis confirmed the benefit of using cannabinoids in pairs, with calculated combination indices being <1 in a number of cases. The most efficacious cannabinoid-pairs subsequently synergised further when combined with the chemotherapy agents, and were also able to sensitise leukaemia cells to their cytotoxic effects. The sequence of administration of these drugs was important though; using cannabinoids after chemotherapy resulted in greater induction of apoptosis, whilst this was the opposite when the schedule of administration was reversed. Our results suggest that when certain cannabinoids are paired together, the resulting product can be combined synergistically with common anti-leukaemia drugs allowing the dose of the cytotoxic agents to be dramatically reduced yet still remain efficacious. Nevertheless, the sequence of drug administration is crucial to the success of these triple combinations and should be considered when planning such treatments.”
]]>