THC shows activity against cultured Plasmodium falciparum

pubmed logo

“The FDA approved drug Dronabinol was identified in a previous study applying virtual screening using the haemozoin crystal as a target against malaria parasites.

The active ingredient of dronabinol is synthetic tetrahydrocannabinol (THC), which is one of the major cannabinoids from Cannabis sativa.

Traditional use of cannabis for malaria fever was reported in the world’s oldest pharmacopoeia, dating to around 5000 years ago.

In this research we report that THC inhibits β-haematin (synthetic haemozoin) and malaria parasite growth.

Due the psychoactivity of THC, CBD, the other major naturally occurring cannabinoid that lacks the off-target psychoactive effects of THC, was also tested and inhibited β-haematin but showed only a mild antimalarial activity. To evaluate whether THC inhibit haemozoin formation, we performed a cellular haem fractionation assay that indicated that is not the likely mechanism of action.

For the first time, the cannabinoid chemical structure is raised as a new chemical class to be further studied for malaria treatment, aiming to overcome the undesirable psychoactive effects of THC and optimize the antimalarial effects.”

https://pubmed.ncbi.nlm.nih.gov/34763083/

https://www.sciencedirect.com/science/article/abs/pii/S0960894X21006697?via%3Dihub

Pharmacological Analysis of Cannabis Sativa: A Potent Herbal Plant

“Genus Cannabis belong to family Cannabaceae and is traditionally used as medicinal plant against many diseases notably asthma, malaria, treatment of skin diseases, diabetes and headache. The plant Cannabis sativa L. is flowering and an annual herbaceous plant located to eastern Asia but now of cosmopolitan distribution due to extensive cultivation.

Aim of the study: The aim of review is to provide a complete evaluation of the botanical, ethnological and chemical aspects of Cannabis sativa L., and its importance in pharmacological studies.

Results and discussions: This article briefly reviews the botany, traditional knowledge, pharmacological and therapeutic application of the plant C. sativa. This is an attempt to compile and document information about the chemical constituent, pharmacological and therapeutic effects of C. sativa as important herbal drug due to its safety and effectiveness. Studies have revealed its use as anti-bacterial, anti-fungal, anti-cancer, anti-inflammatory and improving testicular function in rats. Consumption of C. sativa is greater in all over the world among all other drugs of abuse in its various forms such as marijuana, hashish and cannabis oil. The study of herbal medicine spans the knowledge of biology, history, source, physical and chemical nature, and mechanism of action, traditional, medicinal and therapeutic use of drug. This article also provide knowledge about macroscopically and microscopically characters of Cannabis sativa with geographical sources. The wellknown cannabinoids are Tetrahydrocannabinol (THC), Cannabidiol (CBD) and Cannabichromene (CBC) and their pharmacological properties and importance have been extensively studied. Hence, efforts are required to establish and validate evidence regarding safety and practices of Ayurveda medicines.

Conclusion: Thes studies will help in expanding the current therapeutic potential of C. sativa and it also provide a strong support to its future clinical use as herbal medicines having safe in use with no side effects.”

https://pubmed.ncbi.nlm.nih.gov/32600228/

https://www.eurekaselect.com/183226/article

Molecular docking analysis of phyto-constituents from Cannabis sativa with pfDHFR.

Image result for Bioinformation journal

“Available antimalarial drugs have been associated with numerous side effects, which include skin rashes and myelo-suppression. Therefore, it is of interest to explore compounds from natural source having drug-like properties without side effect.

This study focuses on the screening of compounds from Cannabis sativa against malaria Plasmodium falciparum dihydrofolate reductase for antimalarial properties using Glide (Schrodinger maestro 2018-1).

The result showed that phytochemicals from Cannabis sativa binds with a higher affinity and lower free energy than the standard ligand with isovitexin and vitexin having a glide score of -11.485 and -10.601 respectively, sophoroside has a glide score of -9.711 which is lower than the cycloguanil (co-crystallized ligand) having a glide score of -6.908.

This result gives new perception to the use of Cannabis sativa as antimicrobial agent.”

https://www.ncbi.nlm.nih.gov/pubmed/31223216

http://www.bioinformation.net/014/97320630014574.htm

Oral Ingestion of Cannabis sativa: Risks, Benefits, and Effects on Malaria-Infected Hosts.

“The emergence of a multidrug-resistant strain of Plasmodium falciparum (Pf Pailin) raises concern about malaria control strategies. Unfortunately, the role(s) of natural plants/remedies in curtailing malaria catastrophe remains uncertain. The claims of potential antimalarial activity of Cannabis sativa in vivo have not been well established nor the consequences defined. This study was, therefore, designed to evaluate the effects of whole cannabis consumption on malaria-infected host. Methods: Thirty mice were inoculated with dose of 1×107 chloroquine-resistant Plasmodium berghei ANKA-infected erythrocyte and divided into six treatment groups. Cannabis diet formulations were prepared based on weighted percentages of dried cannabis and standard mice diet and the study animals were fed ad libitum. Chemosuppression of parasitemia, survival rates, parasite clearance, and recrudescence time were evaluated. Histopathological studies were performed on the prefrontal cortex (PFC) and hippocampus of the animals after 14 days’ consumption of cannabis diet formulation by naive mice. Results: There was a significant difference (p<0.05) in the day-4 chemosuppression of parasitemia between the animals that were fed C. sativa and chloroquine relative to the untreated controls. There was also a significant difference in the survival rate (p<0.05) of animals fed C. sativa diet (40%, 20%, 10%, and 1%) in contrast to control animals on standard mice diet. A parasite clearance time of 2.18±0.4 was recorded in the chloroquine treatment group, whereas recrudescence in chloroquine group occurred on day 7. There were slight histomorphological changes in the PFC and cell densities of the dentate gyrus of the hippocampus of animals that were fed C. sativa. Conclusions: C. sativa displayed mild antimalarial activity in vivo. There was evident reduction in symptomatic manifestation of malaria disease, though unrelated to levels of parasitemia. This disease tolerance status may be beneficial, but may also constitute a transmission burden through asymptomatic carriage of parasites by habitual cannabis users.” https://www.ncbi.nlm.nih.gov/pubmed/30498786 https://www.liebertpub.com/doi/10.1089/can.2018.0043]]>

[The impact of cannabinoids on the endocrine system].

 

Related image “Cannabinoids are naturally occurring compounds, derivatives of Indian hemp, in which tetrahydrocannabinol (THC) is the most important. Marijuana, hashish and hash oil are among those most commonly used in the group. Cannabinoids (marjhuana and hashish) have been used throughout recorded history as effective drugs in treating various diseases and conditions such as: malaria, hypertension, constipation, bronchial asthma, rheumatic pains, and as natural pain relief in labour and joint pains. Marijuana acts through cannabinoid receptors CB 1 and CB2. Both receptors inhibit cAMP accummulation (through Gi/o proteins) and stimulate mitrogen- activated protein kinase. CB1 rceptors are located in CNS and in adipose tissue, digestive tract, muscles, heart, lungs, liver, kidneys, gonads, prostate gland and other peripheral tissues. CB2 cannabinoid receptors are located in the peripheral nervous system (at the ends of peripheral nerves), and on the surfaces of the cells of the immunological system. The discovery of endogenous cannabinoids has contributed to a better understanding of their role in the regulation of the intake of food, energetic homeostasis and their significant influence on the endocrine system.”
]]>