The effect of cannabinoids on dinitrofluorobenzene-induced experimental asthma in mice.

“Cannabinoids have anti-inflammatory effects and can produce bronchodilation in the airways.

We have investigated the effects of cannabinoids on tracheal hyperreactivity and airway inflammation in dinitrofluorobenzene (DNFB)-induced experimental non-atopic asthma in mice.

These results show that cannabinoid CB1 receptor agonist can prevent tracheal hyperreactivity to 5-HT in DNFB-induced non-atopic asthma in mice.”

http://www.ncbi.nlm.nih.gov/pubmed/27216000

Cannabinoid receptor 2 (CB2) agonists and antagonists: a patent update.

“Modulation of the CB2 receptor is an interesting approach for pain and inflammation, arthritis, addictions, neuroprotection, and cancer, among other possible therapeutic applications, and is devoid of central side effects.

Structural diversity of CB2 modulator scaffolds characterized the patent literature.

Several CB2 agonists reached clinical Phase II for pain management and inflammation.

Other therapeutic applications need to be explored such as neuroprotection and/or neurodegeneration.”

http://www.ncbi.nlm.nih.gov/pubmed/27215781

Anti-inflammatory and antioxidant effects of a combination of cannabidiol and moringin in LPS-stimulated macrophages.

“Inflammatory response plays an important role in the activation and progress of many debilitating diseases. Natural products, like cannabidiol, a constituent of Cannabis sativa, and moringin, an isothiocyanate obtained from myrosinase-mediated hydrolysis of the glucosinolate precursor glucomoringin present in Moringa oleifera seeds, are well known antioxidants also endowed with anti-inflammatory activity.

This is due to a covalent-based mechanism for ITC, while non-covalent interactions underlie the activity of CBD. Since these two mechanisms are distinct, and the molecular endpoints are potentially complementary, we investigated in a comparative way the protective effect of these compounds alone or in combination on lipopolysaccharide-stimulated murine macrophages.

Our results show that the cannabidiol (5μM) and moringin (5μM) combination outperformed the single constituents that, at this dosage had only a moderate efficacy on inflammatory (Tumor necrosis factor-α, Interleukin-10) and oxidative markers (inducible nitric oxide synthase, nuclear factor erythroid 2-related factor 2, nitrotyrosine). Significant upregulation of Bcl-2 and downregulation of Bax and cleaved caspase-3 was observed in cells treated with cannabidiol-moringin combination.

Treatment with the transient receptor potential vanilloid receptor 1 antagonist was detrimental for the efficacy of cannabidiol, while no effect was elicited by cannabinoid receptor 1 and cannabinoid receptor 2 antagonists. None of these receptors was involved in the activity of moringin.

Taken together, our in vitro results testify the anti-inflammatory, antioxidative, and anti-apoptotic effects of the combination of cannabidiol and moringin.”

http://www.ncbi.nlm.nih.gov/pubmed/27215129

[MEDICAL CANNABIS].

“The cannabis plant has been known to humanity for centuries as a remedy for pain, diarrhea and inflammation.

Current research is inspecting the use of cannabis for many diseases, including multiple sclerosis, epilepsy, dystonia, and chronic pain.

In inflammatory conditions cannabinoids improve pain in rheumatoid arthritis and: pain and diarrhea in Crohn’s disease.

Despite their therapeutic potential, cannabinoids are not free of side effects including psychosis, anxiety, paranoia, dependence and abuse.

Controlled clinical studies investigating the therapeutic potential of cannabis are few and small, whereas pressure for expanding cannabis use is increasing.

Currently, as long as cannabis is classified as an illicit drug and until further controlled studies are performed, the use of medical cannabis should be limited to patients who failed conventional better established treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/27215115

Cannabinoid receptor 2 as a potential therapeutic target in rheumatoid arthritis

Logo of bmcmudis

“Some of cannabinoids, which are chemical compounds contained in marijuana, are immunosuppressive.

One of the receptors, CB receptor 1 (CB1), is expressed predominantly by the cells in the central nervous system, whereas CB receptor 2 (CB2) is expressed primarily by immune cells.

Theoretically, selective CB2 agonists should be devoid of psychoactive effects.

In this study, we investigated therapeutic effects of a selective CB2 agonist on arthritis.

The present study suggests that a selective CB2 agonist could be a new therapy for RA that inhibits production of inflammatory mediators from FLS, and osteoclastogenesis.

This is the first report of therapeutic effect of a selective CB2 agonist on CIA.

Although the effect was mild, optimization of dosage and/or treatment protocol might enhance the effect.

Perhaps, more potent selective CB2agonists might solve this problem.

Cannabinoids are pharmacologically active components of Cannabis sativa.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243420/

The synthetic cannabinoid WIN55,212-2 mesylate decreases the production of inflammatory mediators in rheumatoid arthritis synovial fibroblasts by activating CB2, TRPV1, TRPA1 and yet unidentified receptor targets

Logo of jinflamm

“Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by joint inflammation and cartilage destruction.

In this study we assessed the ability of WIN to modulate cytokine and MMP-3 production in SFs over a wide concentration range and identified specific receptor targets that mediate the effects of this synthetic cannabinoid.

The synthetic cannabinoid WIN in low concentrations exhibits anti-inflammatory effects in synovial fibroblasts independent of CB1 and CB2 while CB2 and yet unidentified receptor targets are responsible for WIN effects in micromolar concentrations.

Our results indicate a TRPV1/TRPA1 dependent mechanism of SF regulation that might be coupled to cellular energy status and calcium content.

In this report we demonstrated anti-inflammatory effects of the synthetic cannabinoid WIN in low and high concentrations.

Furthermore, this study demonstrated anti-inflammatory effects via modulation of TRP channels by WIN. Together, inactivation of TRPs and activation of cannabinoid receptors might also reduce the sensation of pain, which further underlines the potential of WIN in the treatment of chronic inflammation.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4858820/

Phytocannabinoids and cannabimimetic drugs: recent patents in central nervous system disorders.

“Starting from the chemical structure of phytocannabinoids, isolated from Cannabis sativa plant, research groups designed numerous cannabimimetic drugs.

These compounds according to their activities can be partial, full agonists and antagonists of cannabinoid receptors.

Anecdotal reports and scientific studies described beneficial properties of cannabinoids and their derivatives in several pathological conditions like neurological and neuropsychiatric disorders, and in many other diseases ranging from cancer, atherosclerosis, stroke, hypertension, inflammatory related disorders, and autoimmune diseases.

The cannabinoid CB1 receptor was considered particularly interesting for therapeutic approaches in neurological diseases, because primarily expressed by neurons of the central nervous system. In many experimental models, these drugs act via this receptor, however, CB1 receptor independent mechanisms have been also described. Furthermore, endogenous ligands of cannabinoid receptors, the endocannabinoids, are potent modulators of the synaptic function in the brain. In neurological diseases, numerous studies reported modulation of the levels of endocannabinoids according to the phase of the disease and its progression.

CONCLUSIONS:

Finally, although the study of the mechanisms of action of these compounds is still unsolved, many reports and patents strongly suggest therapeutic potential of these compounds in neurological diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27184693

Neuroprotection by Cannabinoids in Huntington’s Disease

“A Double Blind, Randomized, Cross Over, Placebo Controlled Phase 2 Clinical Trial to Asses Neuroprotection by Cannabinoids in Huntington’s Disease.”

ClinicalTrials.gov

“Huntington’s disease (HD) is a progressive neurodegenerative disorder, related to an abnormal expansion of CAG triplets in the huntingtin gene, characterized by motor, cognitive and behavioral abnormalities, without known effective symptomatic treatment and without known disease slowing strategy. The most severe neuropathological lesions observed in HD take place in the striatum, one brain area important in motor control and rich in cannabinoid receptors (CBR). CBR are subdivided in two classes: CB1R are located in neurons and play a role in neuronal function; CB2R in brain are located mostly in microglia and modulate neuroinflammation.

CBR disappear early in the course of HD, before there is a massive drop out of cells in the striatum. Cannabinoid transmission is also an early event in brains of animal models of HD. In R6/2 mice, which carry large CAG expansions and develop an early and severe HD phenotype the suppression of the CB1R gene further accelerate the development of a severe clinical syndrome and the characteristic brain inclusions and abnormalities of synaptic density. R6/2 treated mice treated with cannabinoids improve their clinical phenotype, their brain lesions, the synaptic density and the levels of BNDF, a neurotrophic factor which enhances survival and resistance of striatal neurons.

Preliminary studies of cannabinoids in patients with HD have shown that these compounds are safe in these patients.”

https://clinicaltrials.gov/show/NCT01502046

Cannabis for refractory psoriasis-high hopes for a novel treatment and a literature review.

“Psoriasis is a common skin disorder characterized by hyper proliferation of keratinocytes. Although the exact pathophysiology of psoriasis is not entirely understood, immune system and its interaction with nervous system has been postulated and investigated as the underlying mechanism. The interaction between these two systems through cholinergic anti-inflammatory pathway and also endocannabinoid system, may suggest cannabinoids as potential addition to anti-psoriatic armamentarium.”

http://www.ncbi.nlm.nih.gov/pubmed/27164964

http://www.thctotalhealthcare.com/category/psoriasis/

Expression analysis of cannabinoid receptors 1 and 2 in B cells during pregnancy and their role on cytokine production.

“The endocannabinoid system consists in a family of lipids that binds to and activates cannabinoid receptors. There are two receptors so far described, the cannabinoid receptor 1 (CB1) and 2 (CB2).

In the context of pregnancy, the endocannabinoid system was shown participates in different key aspects of reproductive events. B-lymphocytes are pleiotropic cells belonging to the adaptive arm of the immune system. Besides immunoglobulin production, B-lymphocytes were recently shown to be actively involved in antigen presentation as well as cytokine production, thus playing a central role in immunity.

In this study we first aimed to characterize the expression of CB1 and CB2 receptors in B cells during pregnancy and then analyze the impact of their activation in term of cytokine production by B cells from pregnant and non-pregnant mice.

We observed that the expression of CB1 and CB2 receptors in B-lymphocytes is differentially regulated during pregnancy. While CB2 expression is down regulated CB1 is augmented in B-lymphocytes of pregnant mice.

Additionally, the treatment of activated B-lymphocytes with specific CB1 and CB2 agonists, showed a different response in term of cytokine production. Particularly, CB1 against boosted the production of the anti-inflammatory cytokine IL-10 by activated B-lymphocytes from pregnant mice.”

http://www.ncbi.nlm.nih.gov/pubmed/27163857