“Hemp (Cannabis sativa L.) is an eco‐friendly and multifunctional plant. Hemp hurd is a by‐product of hemp plant during hemp fiber separation. Although hemp hurd is repeatedly announced owing antibacterial activity, it has never been systematically investigated and reported. In this study, the antibacterial activity of hemp hurd powder against Escherichia coli is investigated. This article reveals antibacterial activity of hemp hurd where hemp hurd powder inhibits the growth of E. coli. Meanwhile, the self‐contamination (forming during retting process) inside hemp hurd has dramatic impact on the antibacterial performance. To achieve better antibacterial activity, hemp hurd was heat treated to eliminate self‐contaminations. The impact of the particle sizes and heat treatment on the antibacterial effectiveness was evaluated.”
Tag Archives: antimicrobial
Chemical Characterization and Evaluation of the Antibacterial Activity of Essential Oils from Fibre-Type Cannabis sativa L. (Hemp).
“Volatile terpenes represent the largest group of Cannabis sativa L. components and they are responsible for its aromatic properties. Even if many studies on C. sativa have been focused on cannabinoids, which are terpenophenolics, little research has been carried out on its volatile terpenic compounds.
In the light of all the above, the present work was aimed at the chemical characterization of seventeen essential oils from different fibre-type varieties of C. sativa (industrial hemp or hemp) by means of GC-MS and GC-FID techniques.
In total, 71 compounds were identified, and the semi-quantitative analysis revealed that α- and β-pinene, β-myrcene and β-caryophyllene are the major components in all the essential oils analysed. In addition, a GC-MS method was developed here for the first time, and it was applied to quantify cannabinoids in the essential oils.
The antibacterial activity of hemp essential oils against some pathogenic and spoilage microorganisms isolated from food and food processing environment was also determined. The inhibitory effects of the essential oils were evaluated by both the agar well diffusion assay and the minimum inhibitory concentration (MIC) evaluation. By using the agar diffusion method and considering the zone of inhibition, it was possible to preliminarily verify the inhibitory activity on most of the examined strains.
The results showed a good antibacterial activity of six hemp essential oils against the Gram-positive bacteria, thus suggesting that hemp essential oil can inhibit or reduce bacterial proliferation and it can be a valid support to reduce microorganism contamination, especially in the food processing field.”
https://www.ncbi.nlm.nih.gov/pubmed/31234360
https://www.mdpi.com/1420-3049/24/12/2302

“Cannabis Found Effective in Fighting Drug-Resistant Bacteria”

1959: “[Hemp (Cannabis sativa)-an antibiotic drug. 3. Isolation and constitution of two acids from Cannabis sativa].” https://
1962: “Antibiotic activity of various types of cannabis resin.” https://
2008: “Antibacterial cannabinoids from Cannabis sativa: a structure-activity study.” https://
“Cannabis plant extracts can effectively fight drug-resistant bacteria.” http://abcnews.go.com/
“According to research, the five most common cannabinoid compounds in weed—tetrahydrocannabinol (THC), cannabidiol, cannabigerol, cannabinol and cannabichromene—can kill antibiotic-resistant bacteria.” https://
2014: “Better than antibiotics, cannabinoids kill antibiotic-resistant MRSA bacteria” http://
2019: “Cannabis Found Effective in Fighting Drug-Resistant Bacteria” https://
“Cannabis oil kills bacteria better than established antibiotics… providing a possible new weapon in the war on superbugs, according to new research. It offers hope of curing killer infections – including MRSA and pneumonia, say scientists.” https://

Molecular docking analysis of phyto-constituents from Cannabis sativa with pfDHFR.

“Available antimalarial drugs have been associated with numerous side effects, which include skin rashes and myelo-suppression. Therefore, it is of interest to explore compounds from natural source having drug-like properties without side effect.
This study focuses on the screening of compounds from Cannabis sativa against malaria Plasmodium falciparum dihydrofolate reductase for antimalarial properties using Glide (Schrodinger maestro 2018-1).
The result showed that phytochemicals from Cannabis sativa binds with a higher affinity and lower free energy than the standard ligand with isovitexin and vitexin having a glide score of -11.485 and -10.601 respectively, sophoroside has a glide score of -9.711 which is lower than the cycloguanil (co-crystallized ligand) having a glide score of -6.908.
This result gives new perception to the use of Cannabis sativa as antimicrobial agent.”
Antimicrobial potential of endocannabinoid and endocannabinoid-like compounds against methicillin-resistant Staphylococcus aureus.
“Antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava leaf extracts against methicillin-resistant Staphylococcus aureus.” https://www.ncbi.nlm.nih.gov/pubmed/30120078
“Antimicrobial Activity of Cannabis sativa L.” https://www.scirp.org/journal/PaperInformation.aspx?PaperID=18123“Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.).” https://www.ncbi.nlm.nih.gov/pubmed/19969046
“Antimicrobial studies of the leaf of cannabis sativa L.” https://www.ncbi.nlm.nih.gov/pubmed/16414764
A systematic review on the neuroprotective perspectives of beta-caryophyllene.
“Beta (β)-caryophyllene (BCAR) is a major sesquiterpene of various plant essential oils reported for several important pharmacological activities, including antioxidant, anti-inflammatory, anticancer, cardioprotective, hepatoprotective, gastroprotective, nephroprotective, antimicrobial, and immune-modulatory activity. Recent studies suggest that it also possesses neuroprotective effect.
This study reviews published reports pertaining to the neuropharmacological activities of BCAR. Databases such as PubMed, Scopus, MedLine Plus, and Google Scholar with keywords “beta (β)-caryophyllene” and other neurological keywords were searched. Data were extracted by referring to articles with information about the dose or concentration/route of administration, test system, results and discussion, and proposed mechanism of action.
A total of 545 research articles were recorded, and 41 experimental studies were included in this review, after application of exclusion criterion. Search results suggest that BCAR exhibits a protective role in a number of nervous system-related disorders including pain, anxiety, spasm, convulsion, depression, alcoholism, and Alzheimer’s disease.
Additionally, BCAR has local anesthetic-like activity, which could protect the nervous system from oxidative stress and inflammation and can act as an immunomodulatory agent. Most neurological activities of this natural product have been linked with the cannabinoid receptors (CBRs), especially the CB2R. This review suggests a possible application of BCAR as a neuroprotective agent.”
https://www.ncbi.nlm.nih.gov/pubmed/30281175
“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.” http://www.ncbi.nlm.nih.gov/pubmed/23138934

