Smoking marijuana reduces cancer risk

“Marijuana reduces cancer risk and kills existing tumors”

People smoke a joint during a demonstration organised by the CIRC (research and information center) and entitled 'L'appel du 18 juin' (the call of June 18) to claim for the legalization of the use of marijuana and hashish, on June 18, 2011 at the Parc de la Villette in Paris. The 'Appel du 18 Joint' uses a play on words to make their point, coming on the same day as France celebrates the 'Appel du 18 Juin' or Call of 18 June, when Charles de Gaulle called for resistance against collaborationist Vichy government in 1940. AFP PHOTO / FRED DUFOUR

“This may be hard to believe — as we’re fairly accustomed to the notion that inhaling smoke is always bad for your health — but research shows smoking marijuana actually decreases the risk for developing lung cancer.

According to multiple study findings published on Cancer.gov, “Cannabinoids appear to kill tumor cells but do not affect their nontransformed counterparts and may even protect them from cell death.”

Dr. Donald Tashkin, professor emeritus of medicine at UCLA, also recently revealed to LA Weekly that after 30 years of studying the effects of marijuana smoke on lung function, he did not find any association between lung cancer and smoking weed.

Smoking marijuana doesn’t lead to impaired lung function either

Tashkin also found smoking marijuana does not lead to impaired lung function even after years of habitual use.”

More: http://extract.suntimes.com/information-resources/10/153/892/smoking-marijuana-reduces-cancer-risk

“Cannabis has been shown to kill cancer cells in the laboratory. Cannabinoids appear to kill tumor cells but do not affect their nontransformed counterparts and may even protect them from cell death.” http://www.cancer.gov/about-cancer/treatment/cam/patient/cannabis-pdq#section/all

http://www.thctotalhealthcare.com/category/cancer/

Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveal a Mechanism for Regulation of Tumor Progression.

“The G-protein-coupled chemokine receptor, CXCR4, generates signals that lead to cell migration, cell proliferation, and other survival mechanisms which result in the metastatic spread of primary tumor cells to distal organs.

Numerous studies have demonstrated that CXCR4 can form homodimers, or can heterodimerize with other GPCRs to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor.

Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells.

Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2, and ultimately, reduced cancer cell functions such as calcium mobilization and cellular chemotaxis.

Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells, as well as CXCR4-mediated migration of immune cells, it is therefore plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4.

Taken together, the data illustrates a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function, and perhaps, tumor progression.”

http://www.ncbi.nlm.nih.gov/pubmed/26841863

Clinical/Therapeutic Approaches for Cannabinoid Ligands in Central and Peripheral Nervous System Diseases: Mini Review.

“Cannabinoids, the components of Cannabis sativa Linnaeus, interact with CB1 and CB2 receptors, which are located both in the central nervous system and in the periphery and thus may exert a widespread biological activity in the body.

The main medicinal properties of cannabinoids include analgesic, anti-inflammatory, antitumor, appetite stimulation, antiemesis, and muscle relaxation effects.

This mini review aims to explore existing clinical trials that investigated the use of cannabinoids in diseases affecting the nervous system.

There is evidence that cannabinoid-based drugs may effectively control some symptoms associated with nervous system dysfunction, especially various types of pain and neurologic disorders, although studies are limited.

The efficacy of cannabinoid drugs in the treatment of nervous system diseases should be verified in future large-scale randomized clinical trials.”

http://www.ncbi.nlm.nih.gov/pubmed/26818043

Cannabinoids inhibit cellular respiration of human oral cancer cells.

Related image

“The primary cannabinoids, Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and Delta(8)-tetrahydrocannabinol (Delta(8)-THC) are known to disturb the mitochondrial function and possess antitumor activities. These observations prompted us to investigate their effects on the mitochondrial O(2) consumption in human oral cancer cells (Tu183). This epithelial cell line overexpresses bcl-2 and is highly resistant to anticancer drugs. A rapid decline in the rate of respiration was observed when Delta(9)-THC or Delta(8)-THC was added to the cells. The inhibition was concentration-dependent, and Delta(9)-THC was the more potent of the two compounds. Anandamide (an endocannabinoid) was ineffective; suggesting the effects of Delta(9)-THC and Delta(8)-THC were not mediated by the cannabinoid receptors. These results show the cannabinoids are potent inhibitors of human oral cancer cells (Tu183) cellular respiration and are toxic to this highly malignant tumor.” http://www.ncbi.nlm.nih.gov/pubmed/20516734

https://www.karger.com/Article/Abstract/312686

http://www.thctotalhealthcare.com/category/oral-cancer/

Cannabis ‘Can Reduce Tumour Growth’, Expert Says

“He believes chemicals in cannabis could be anti-cancer agents”

Cannabis

Marijuana is now used by cancer patients in some countries to ease the pain of their illness – but it might actually offer a cure.Guillermo Velasco of the Complutense University of Madrid says there is evidence that cannabinoids – chemicals in cannabis – actually reduced tumour growth in animals.But he says that there is little interest from pharmaceutical companies.

Velasco told Upworthy,, ‘One of the reasons why [it] is so complicated to promote clinical studies is that the active components of marijuana are natural products that cannot be patented and therefore there are few pharma companies interested in their clinical development.’

Earlier this year, the U.S. government admitted that the drug can shrink cancer cells in rodent studies.

In a page of official government advice, the U.S. government now says,, ‘Cannabis has been shown to kill cancer cells in the laboratory.’

The site says that the effect has so far been seen in rodent studies, and cautions,  ‘At this time, there is not enough evidence to recommend that patients inhale or ingest Cannabis as a treatment for cancer-related symptoms or side effects of cancer therapy.’’”  https://uk.news.yahoo.com/cannabis–can-reduce-tumour-growth—expert-says-120408138.html#pQEf8NO

Involvement of PAR-4 in cannabinoid-dependent sensitization of osteosarcoma cells to TRAIL-induced apoptosis.

Logo of ijbiosci

“Osteosarcoma is the most common malignant bone tumor in childhood and adolescence.

Cannabinoids (CBs), the active constituents of Cannabis sativa, are known to exert a wide range of central and peripheral effects.

Recently, numerous studies evidenced the role of cannabinoids in the regulation of cell death and survival, focusing the anti-proliferative effects of these compounds in various tumours… cannabinoids can also activate autophagic process…

The aim of the present study was to investigate the effects induced by cannabinoids in osteosarcoma cells and the molecular pathway…

The synthetic cannabinoid WIN 55,212-2 is a potent cannabinoid receptor agonist with anticancer potential.

Moreover, we indicate that a key role in WIN action is played by the tumor suppressor protein PAR-4.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4007360/

 

Potentiation of the antitumor activity of adriamycin against osteosarcoma by cannabinoid WIN-55,212-2

Logo of onclett

“Osteosarcoma is the most frequent primary malignant bone tumor that occurs in children and adolescents. Osteosarcoma is a bone malignancy that predominantly affects children and adolescents, and exhibits high invasion and metastasis rates.

Although adriamycin (ADM) is an effective benchmark agent for the management of osteosarcoma, it also results in harmful side-effects including toxicity and chemoresistance that substantially affect the quality of life of patients. Therefore, novel therapeutic approaches and drugs must be sought for the treatment of osteosarcoma.

Natural products which have potential antitumor activities have become a focus of attention for study in previous years. Cannabinoids, the active components naturally derived from the marijuana plant Cannabis sativa L., have been reported as potential antitumor drugs based on their ability to limit inflammation, cell proliferation and cell survival.

To date, several cannabinoids have been identified and characterized, including Δ(9)-tetrahydrocannabinol (THC), cannabidiol, cannabinol (CBN) and anandamide, as well as synthetic cannabinoids, including WIN-55,212-2, JWH-133 and (R)-methanandamide.

In the early 1970s, THC and CBN were shown to inhibit tumor growth in Lewis lung carcinoma. Subsequently, cannabinoids were found to induce apoptosis and inhibit the proliferation of various cancer cells, including those of glioma and lymphoma, and prostate, breast, skin and pancreatic cancer…

In conclusion, the present study indicated that cannabinoid WIN-55,212-2 is antiproliferative, antimetastatic and antiangiogenic against MG-63 cells in vitro, and presented evidence that cannabinoid WIN-55,212-2 may result in synergistic antitumor action in combination with ADM against osteosarcoma.

These findings may offer a novel strategy for the treatment of osteosarcoma.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4580018/

Control of Breast Cancer by the Endocannabinoid System

G

“Activation of the endocannabinoid system through CB1, CB2 and additional receptor subtypes results in the inhibition of a broad range of cancers.

The endocannabinoid system was discovered through research focusing on the classical cannabinoid agonist, ?9-tetrahydrocannabinol (?9-THC), and other synthetic cannabinoids.

This proposal will focus on the potential treatment of human breast cancer using cannabinoids as selective antitumor agents.

We have found that cannabinoid compounds activating CB1, CB2 and additional receptor subtypes can inhibit breast cancer cell proliferation and invasiveness and we have discovered down-stream targets that potentially link cannabinoid receptor stimulation to these effects.

Furthermore, our preliminary studies provide evidence that endogenous endocannabinoid tone tonically inhibits metastatic breast cancer cell proliferation and invasiveness through the activation of cannabinoid receptors.

Our preliminary data also suggests that cannabinoid compounds possess selective efficacy, having less adverse effects on the normal human cells from which the breast cancers arise.

Since toxicity in healthy tissue limits the efficacy of current cancer treatments, discovering the mechanism behind selective efficacy in human tissues is of clinical importance.

Cannabinoids can inhibit multiple types of tumor growth in vivo…

Testing the hypotheses outlined in the application may lead to the development of effective inhibitors of breast, and perhaps other, cancers.

This research may also elucidate novel mechanisms related to the anticancer activity of cannabinoids, and will serve to develop the career of the candidate in the field of cancer biology.”

 http://grantome.com/grant/NIH/K01-CA111723-01A2

http://www.thctotalhealthcare.com/category/breast-cancer/

Endocannabinoids and Cancer.

“A large body of evidence shows that cannabinoids, in addition to their well-known palliative effects on some cancer-associated symptoms, can reduce tumour growth in animal models of cancer.

They do so by modulating key cell signalling pathways involved in the control of cancer cell proliferation and survival.

In addition, cannabinoids inhibit angiogenesis and cell proliferation in different types of tumours in laboratory animals.

By contrast, little is known about the biological role of the endocannabinoid system in cancer physio-pathology, and several studies suggest that it may be over-activated in cancer.

In this review, we discuss our current understanding of cannabinoids as antitumour agents, focusing on recent advances in the molecular mechanisms of action, including resistance mechanisms and opportunities for combination therapy approaches.”

http://www.ncbi.nlm.nih.gov/pubmed/26408171

The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells.

“One of the most exciting areas of current research in the cannabinoid field is the study of the potential application of these compounds as antitumoral drugs. Here, we describe the signaling pathway that mediates cannabinoid-induced apoptosis of tumor cells. By using a wide array of experimental approaches, we identify the stress-regulated protein p8 (also designated as candidate of metastasis 1) as an essential mediator of cannabinoid antitumoral action and show that p8 upregulation is dependent on de novo-synthesized ceramide. We also observe that p8 mediates its apoptotic effect via upregulation of the endoplasmic reticulum stress-related genes ATF-4, CHOP, and TRB3. Activation of this pathway may constitute a potential therapeutic strategy for inhibiting tumor growth.”

http://www.ncbi.nlm.nih.gov/pubmed/16616335

“Marijuana has been used in medicine for many centuries, and nowadays there is a renaissance in the study of the therapeutic effects of cannabinoids. One of the most active areas of research in the cannabinoid field is the study of the potential antitumoral application of these drugs. Our results unravel the mechanism of cannabinoid antitumoral action by demonstrating the proapoptotic role of the stress protein p8 via its downstream targets ATF-4, CHOP, and TRB3.

The identification of this pathway may contribute to the design of therapeutic strategies for inhibiting tumor growth. In particular, our findings can help to improve the efficiency and selectivity of potential antitumoral therapies with cannabinoids.

Our results also support that cannabinoid treatment does not activate this pathway in nontransformed cells, in line with the belief that cannabinoid proapoptotic action is selective for tumor versus nontumor cells, and that cannabinoids act in a synergic fashion with ER stress inducers as well as with other antitumoral agents.

The identification of the p8-regulated pathway described here may contribute to the design of therapeutic strategies for inhibiting tumor growth. In particular, our findings can help to improve the efficiency and selectivity of a potential cannabinoid-based antitumoral therapy.”

http://www.sciencedirect.com/science/article/pii/S1535610806000857