A pharmacological basis of herbal medicines for epilepsy.

“Epilepsy is the most common chronic neurological disease, affecting about 1% of the world’s population during their lifetime. Most people with epilepsy can attain a seizure-free life upon treatment with antiepileptic drugs (AEDs).

Unfortunately, seizures in up to 30% do not respond to treatment. It is estimated that 90% of people with epilepsy live in developing countries, and most of them receive no drug treatment for the disease. This treatment gap has motivated investigations into the effects of plants that have been used by traditional healers all over the world to treat seizures.

Extracts of hundreds of plants have been shown to exhibit anticonvulsant activity in phenotypic screens performed in experimental animals.

Some of those extracts appear to exhibit anticonvulsant efficacy similar to that of synthetic AEDs.

Dozens of plant-derived chemical compounds have similarly been shown to act as anticonvulsants in various in vivo and in vitro assays.

To a significant degree, anticonvulsant effects of plant extracts can be attributed to widely distributed flavonoids, (furano)coumarins, phenylpropanoids, and terpenoids.

Flavonoids and coumarins have been shown to interact with the benzodiazepine site of the GABAA receptor and various voltage-gated ion channels, which are targets of synthetic AEDs.

Modulation of the activity of ligand-gated and voltage-gated ion channels provides an explanatory basis of the anticonvulsant effects of plant secondary metabolites.

Many complex extracts and single plant-derived compounds exhibit antiinflammatory, neuroprotective, and cognition-enhancing activities that may be beneficial in the treatment of epilepsy.

Thus, botanicals provide a base for target-oriented antiepileptic drug discovery and development.

In the future, preclinical work should focus on the characterization of the effects of plant extracts and plant-derived compounds on well-defined targets rather than on phenotypic screening using in vivo animal models of acute seizures. At the same time, available data provide ample justification for clinical studies with selected standardized botanical extracts and plant-derived compounds.”

http://www.ncbi.nlm.nih.gov/pubmed/26074183

http://www.thctotalhealthcare.com/category/epilepsy-2/

Cannabinoid receptor type 1 agonist ACEA improves motor recovery and protects neurons in ischemic stroke in mice.

“Brain ischemia produces neuronal cell death and the recruitment of pro-inflammatory cells.

In turn, the search for neuroprotection against this type of insult has rendered results involving a beneficial role of endocannabinoid receptor agonists in the Central Nervous System.

In this work, to further elucidate the mechanisms associated to this neuroprotective effect…

Motor tests showed a progressive deterioration in motor activity in ischemic animals, which only ACEA treatment was able to counteract.

Our results suggest that CB1R may be involved in neuronal survival and in the regulation of neuroprotection during focal cerebral ischemia in mice.”

http://www.ncbi.nlm.nih.gov/pubmed/26296704

http://www.thctotalhealthcare.com/category/stroke-2/

Molecular Targets of Cannabidiol in Neurological Disorders.

“Cannabis has a long history of anecdotal medicinal use and limited licensed medicinal use. Until recently, alleged clinical effects from anecdotal reports and the use of licensed cannabinoid medicines are most likely mediated by tetrahydrocannabinol by virtue of: 1) this cannabinoid being present in the most significant quantities in these preparations; and b) the proportion:potency relationship between tetrahydrocannabinol and other plant cannabinoids derived from cannabis. However, there has recently been considerable interest in the therapeutic potential for the plantcannabinoid, cannabidiol (CBD), in neurological disorders but the current evidence suggests that CBD does not directly interact with the endocannabinoid system except in vitro at supraphysiological concentrations. Thus, as further evidence for CBD’s beneficial effects in neurological disease emerges, there remains an urgent need to establish the molecular targets through which it exerts its therapeutic effects. Here, we conducted a systematic search of the extant literature for original articles describing the molecular pharmacology of CBD. We critically appraised the results for the validity of the molecular targets proposed. Thereafter, we considered whether the molecular targets of CBD identified hold therapeutic potential in relevant neurological diseases. The molecular targets identified include numerous classical ion channels, receptors, transporters, and enzymes. Some CBD effects at these targets in in vitro assays only manifest at high concentrations, which may be difficult to achieve in vivo, particularly given CBD’s relatively poor bioavailability. Moreover, several targets were asserted through experimental designs that demonstrate only correlation with a given target rather than a causal proof. When the molecular targets of CBD that were physiologically plausible were considered for their potential for exploitation in neurological therapeutics, the results were variable. In some cases, the targets identified had little or no established link to the diseases considered. In others, molecular targets of CBD were entirely consistent with those already actively exploited in relevant, clinically used, neurological treatments. Finally, CBD was found to act upon a number of targets that are linked to neurological therapeutics but that its actions were not consistent withmodulation of such targets that would derive a therapeutically beneficial outcome. Overall, we find that while >65 discrete molecular targets have been reported in the literature for CBD, a relatively limited number represent plausible targets for the drug’s action in neurological disorders when judged by the criteria we set. We conclude that CBD is very unlikely to exert effects in neurological diseases through modulation of the endocannabinoid system. Moreover, a number of other molecular targets of CBD reported in the literature are unlikely to be of relevance owing to effects only being observed at supraphysiological concentrations. Of interest and after excluding unlikely and implausible targets, the remaining molecular targets of CBD with plausible evidence for involvement in therapeutic effects in neurological disorders (e.g., voltage-dependent anion channel 1, G protein-coupled receptor 55, CaV3.x, etc.) are associated with either the regulation of, or responses to changes in, intracellular calcium levels. While no causal proof yet exists for CBD’s effects at these targets, they represent the most probable for such investigations and should be prioritized in further studies of CBD’s therapeutic mechanism of action.”

http://www.ncbi.nlm.nih.gov/pubmed/26264914

ACEA (a highly selective cannabinoid CB1 receptor agonist) stimulates hippocampal neurogenesis in mice treated with antiepileptic drugs.

“Hippocampal neurogenesis plays a very important role in learning and memory functions.

In a search for best neurological drugs that protect neuronal cells and stimulate neurogenesis with no side effects, cannabinoids proved to be a strong group of substances having many beneficial properties.

The aim of this study was to evaluate the impact of ACEA (arachidonyl-2′-chloroethylamide – a highly selective cannabinoid CB1 receptor agonist) combined with a classical antiepileptic drug sodium valproate (VPA) on neural precursor cells’ proliferation and differentiation in the mouse brain.

VPA administered alone decreased the number of newly born neurons with no significant impact on neurogenesis.

These data provide substantial evidence that VPA administered chronically slightly decreases the proliferation and differentiation of newly born cells while combination of VPA+ACEA significantly increases the level of newborn neurons in the dentate subgranular zone.”

http://www.ncbi.nlm.nih.gov/pubmed/26225920

Cannabinoids blocks tactile allodynia in diabetic mice without attenuation of its antinociceptive effect.

“Diabetic neuropathic pain is one of the most commonly encountered neuropathic pain syndromes.

It is well known that diabetic animals are less sensitive to the analgesic effect of morphine, and opioids are found to be ineffective in the treatment of diabetic neuropathic pain.

Cannabinoids are promising drugs and they share a similar pharmacological properties with opioids.

It has been reported that cannabinoid analgesia remained intact and to be effective in some models of nerve injury.

Thus, we investigated antinociceptive efficacy and the effects of cannabinoids on behavioral sign of diabetic neuropathic pain in diabetic mice by using WIN 55, 212-2, a cannabinoid receptor agonist.

This study suggests that cannabinoids have a potential beneficial effect on experimental diabetic neuropathic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/15342139

Analysis of the anti-allodynic effects of combination of a synthetic cannabinoid and a selective noradrenaline re-uptake inhibitor in nerve injury-induced neuropathic mice.

“Combining drugs not only reduces specific adverse effects of each of the drug at a higher dose but also may lead to enhanced efficacy.

Taking into consideration, the pharmacological similarities between opioids and cannabinoids, we assumed that combination of cannabinoids with noradrenaline re-uptake inhibitors might also be effective…

Overall, our data suggest that combination of a cannabinoid with a selective noradrenaline re-uptake inhibitor may offer a beneficial treatment option for neuropathic pain.”

Δ9-Tetrahydrocannabinolicacid synthase production in Pichia pastoris enables chemical synthesis of cannabinoids.

“Δ9-tetrahydrocannabinol (THC) is of increasing interest as a pharmaceutical and bioactive compound.

Chemical synthesis of THC uses a laborious procedure and does not satisfy the market demand.

The implementation of biocatalysts for specific synthesis steps might be beneficial for making natural product availability independent from the plant.

Δ9-Tetrahydrocannabinolicacid synthase (THCAS) from C. sativa L. catalyzes the cyclization of cannabigerolic acid (CBGA) to Δ9-tetrahydrocannabinolic acid (THCA), which is non-enzymatically decarboxylated to THC.

In conclusion, production of THCAS in Pichia pastoris MutS KM71 KE1, subsequent isolation, and its application in a two-liquid phase setup enables the synthesis of THCA on a mg scale.”

http://www.ncbi.nlm.nih.gov/pubmed/26197418

Selective Reduction of THC’s Unwanted Effects through Serotonin Receptor Inhibition

“While recreational marijuana users may seek the full range of its effects, broad medical use of THC—including for pain, nausea, and anxiety—is hindered by them.

In a new study, Xavier Viñals, Estefania Moreno, Peter McCormick, Rafael Maldonado, Patricia Robledo, and colleagues demonstrate that the cognitive effects of THC are triggered by a pathway separate from some of its other effects.

That pathway involves both a cannabinoid receptor and a serotonin receptor, and when this pathway is blocked, THC can still exert several beneficial effects, including analgesia, while avoiding impairment of memory.

The results of this study are potentially highly important, in that they identify a way to reduce some of what are usually thought of as THC’s unwanted side effects when used for medicinal purposes while maintaining several important benefits, including pain relief.

The widening acceptance of a role for THC in medicine may be accelerated by the option to reduce those side effects by selective pharmacological disruption or blocking of the heteromer.”

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002193

Anandamide exerts its antiproliferative actions on cholangiocarcinoma by activation of the GPR55 receptor

Logo of nihpa

“We have previously shown that AEA exerts growth-suppressing effects on cholangiocarcinoma by inducing apoptosis.

At the time, we assumed that AEA was acting via a receptor-independent mechanism.

However, given the recent discovery and characterization of GPR55 as a novel AEA receptor, our data need to be reassessed to determine if GPR55 activation can decrease cholangiocarcinoma cell proliferation.

Thus, our aims are to determine if these AEA-mediated effects on cholangiocarcinoma cell growth can be attributed to the activation of GPR55.

This data represent the first evidence that GPR55 activation by anandamide can lead to the recruitment and activation of the Fas death receptor complex and that targeting GPR55 activation may be a viable option for the development of therapeutic strategies to treat cholangiocarcinoma.

In conclusion, we have clearly demonstrated a role for GPR55 in the antiproliferative effects of AEA in vivo andin vitro

Cholangiocarcinoma has a very poor prognosis and survival rate; therefore we propose that the development of novel therapeutic strategies that target GPR55 may prove beneficial for the treatment of this devastating disease.

Consistent with our observation that AEA has antiproliferative and pro-apoptotic properties, cannabinoids of various origins (endogenous, plant-derived or synthetic analogues) have been shown to suppress cancer cell growth in vitro as well as in vivo.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3126905/

 

The endocannabinoid anandamide inhibits cholangiocarcinoma growth via activation of the noncanonical Wnt signaling pathway.

Logo of ajpgi

“Cholangiocarcinomas are cancers that have poor prognosis and limited treatment options.

Marijuana and its derivatives have been used in medicine for many centuries.

…cannabinoids might be effective antitumoral agents because of their ability to inhibit the growth of various types of cancer cell lines in culture and in laboratory animals.

Indeed, we have recently demonstrated that the endocannabinoid anandamide (AEA) has antiproliferative effects on cholangiocarcinoma cell lines in vitro via a cannabinoid receptor-independent pathway involving the stabilization of lipid raft-membrane structures and the recruitment of death-receptor complexes into the lipid rafts.

Modulation of the endocannabinoid system may be important in cholangiocarcinoma treatment.

The antiproliferative actions of the noncanonical Wnt signaling pathway warrants further investigation to dissect the mechanism by which this may occur.

We propose that the development of novel therapeutic strategies aimed at modulating the endocannabinoid system, or mimicking the mode of action of AEA, would prove beneficial for the treatment of this devastating disease.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2604798/