Antitumor Activity of Abnormal Cannabidiol and Its Analog O-1602 in Taxol-Resistant Preclinical Models of Breast Cancer.

Image result for frontiers in pharmacology“Cannabinoids exhibit anti-inflammatory and antitumorigenic properties.

Contrary to most cannabinoids present in the Cannabis plant, some, such as O-1602 and abnormal cannabidiol, have no or only little affinity to the CB1 or CB2 cannabinoid receptors and instead exert their effects through other receptors.

Here, we investigated whether the synthetic regioisomers of cannabidiol, abnormal cannabidiol, and a closely related compound, O-1602, display antitumorigenic effects in cellular models of breast cancer and whether it could reduce tumorigenesis in vivo.

Several studies have shown the effects of cannabinoids on chemotherapy-sensitive breast cancer cell lines, but less is known about the antitumorigenic effects of cannabinoids in chemotherapy-resistant cell lines.

Paclitaxel-resistant MDA-MB-231 and MCF-7 breast cancer cell lines were used to study the effect of O-1602 and abnormal cannabidiol on viability, apoptosis, and migration. The effects of O-1602 and abnormal cannabidiol on cell viability were completely blocked by the combination of GPR55 and GPR18-specific siRNAs. Both O-1602 and abnormal cannabidiol decreased viability in paclitaxel-resistant breast cancer cells in a concentration-dependent manner through induction of apoptosis. The effect of these cannabinoids on tumor growth in vivo was studied in a zebrafish xenograft model. In this model, treatment with O-1602 and abnormal cannabidiol (2 µM) significantly reduced tumor growth.

Our results suggest that atypical cannabinoids, like O-1602 and abnormal cannabidiol, exert antitumorigenic effects on paclitaxel-resistant breast cancer cells. Due to their lack of central sedation and psychoactive effects, these atypical cannabinoids could represent new leads for the development of additional anticancer treatments when resistance to conventional chemotherapy occurs during the treatment of breast and possibly other cancers.”

https://www.ncbi.nlm.nih.gov/pubmed/31611800

“Our results suggest that some cannabinoids acting through the GPR55 and/or GPR18 receptors can be helpful in inducing apoptosis in breast cancer cell lines that are unresponsive to paclitaxel. The effects of O-1602 and Abn-CBD on cell viability were observed both in vitro and in a zebrafish xenograft model. These drugs were also reducing cell migration. Taken together, even if no synergistic antitumor effect is always observed when cannabinoids and chemotherapeutic agents are combined as an anticancer treatment, cannabinoids can still provide anticancer benefits on top of their palliative effects. This is particularly important in the context of cancers that have developed resistance to current chemotherapies.”

https://www.frontiersin.org/articles/10.3389/fphar.2019.01124/full

Cannabidiol directly targets mitochondria and disturbs calcium homeostasis in acute lymphoblastic leukemia.

 Image result for cell death & disease“Anticancer properties of non-psychoactive cannabinoid cannabidiol (CBD) have been demonstrated on tumors of different histogenesis. Different molecular targets for CBD were proposed, including cannabinoid receptors and some plasma membrane ion channels. Here we have shown that cell lines derived from acute lymphoblastic leukemia of T lineage (T-ALL), but not resting healthy T cells, are highly sensitive to CBD treatment. CBD effect does not depend on cannabinoid receptors or plasma membrane Ca2+-permeable channels. Instead, CBD directly targets mitochondria and alters their capacity to handle Ca2+. At lethal concentrations, CBD causes mitochondrial Ca2+ overload, stable mitochondrial transition pore formation and cell death. Our results suggest that CBD is an attractive candidate to be included into chemotherapeutic protocols for T-ALL treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/31611561

“Considering the pivotal role of mitochondria in oncogenic re-programming, CBD may be plausible candidate to be included into chemotherapeutic protocols.”

https://www.nature.com/articles/s41419-019-2024-0

Cannabidiol Administration Prevents Hypoxia-Ischemia-Induced Hypomyelination in Newborn Rats.

Image result for frontiers in pharmacology“Neonatal hypoxia-ischemia (HI) is a risk factor for myelination disturbances, a key factor for cerebral palsy.

Cannabidiol (CBD) protects neurons and glial cells after HI insult in newborn animals.

We hereby aimed to study CBD’s effects on long-lasting HI-induced myelination deficits in newborn rats.

In conclusion, HI injury in newborn rats resulted in long-lasting myelination disturbance, associated with functional impairment. CBD treatment preserved function and myelination, likely as a part of a general neuroprotective effect.”

https://www.ncbi.nlm.nih.gov/pubmed/31611802

“In conclusion, our study confirms that a HI insult in rats at a brain developmental stage equivalent to term infants leads to long-lasting myelination disturbance which is directly related to long-term functional disturbances. The administration of CBD single dose after the neonatal HI insult protects the maturational process of OL cells, as well as the mOL function and relationship with axons, thus, preserving normal myelination and restoring neurobehavioral function. Those results open exciting perspectives regarding a possible role for CBD in NHIE and other demyelinating pediatric conditions.”

https://www.frontiersin.org/articles/10.3389/fphar.2019.01131/full

‘Standard THC Units’: a proposal to standardise dose across all cannabis products and methods of administration.

Publication cover image“Cannabis products are becoming increasingly diverse, and they vary considerably in concentrations of ∆9 -tetrahydrocannabinol (THC) and cannabidiol (CBD). Higher doses of THC can increase the risk of harm from cannabis, while CBD may partially offset some of these effects. Lower Risk Cannabis Use Guidelines currently lack recommendations based on quantity of use, and could be improved by implementing standard units. However, there is currently no consensus on how units should be measured or standardised across different cannabis products or methods of administration.

ARGUMENT:

Existing proposals for standard cannabis units have been based on specific methods of administration (e.g. joints) and these may not capture other methods including pipes, bongs, blunts, dabbing, vaporizers, vape pens, edibles and liquids. Other proposals (e.g. grams of cannabis) cannot account for heterogeneity in THC concentrations across different cannabis products. Similar to alcohol units, we argue that standard cannabis units should reflect the quantity of active pharmacological constituents (dose of THC). On the basis of experimental and ecological data, public health considerations, and existing policy we propose that a ‘Standard THC Unit’ should be fixed at 5 milligrams of THC for all cannabis products and methods of administration. If supported by sufficient evidence in future, consumption of Standard CBD Units might offer an additional strategy for harm reduction.

CONCLUSIONS:

Standard THC Units can potentially be applied across all cannabis products and methods of administration to guide consumers and promote safer patterns of use.”

https://www.ncbi.nlm.nih.gov/pubmed/31606008

https://onlinelibrary.wiley.com/doi/abs/10.1111/add.14842

Cellular Distribution of Canonical and Putative Cannabinoid Receptors in Canine Cervical Dorsal Root Ganglia.

Image result for frontiers in veterinary science“Growing evidence indicates cannabinoid receptors as potential therapeutic targets for chronic pain.

Consequently, there is an increasing interest in developing cannabinoid receptor agonists for treating human and veterinary pain.

The present study may represent a morphological substrate to consider in order to develop therapeutic strategies against chronic pain.”

https://www.ncbi.nlm.nih.gov/pubmed/31608295

“The anti-nociceptive potential of the endocannabinoid system has prompted the development of therapeutic cannabinoid receptors agonists or medical marjiuana to be used in pets in order to treat chronic pain.”

https://www.frontiersin.org/articles/10.3389/fvets.2019.00313/full

Effects of cannabidiol (CBD) in neuropsychiatric disorders: A review of pre-clinical and clinical findings.

Progress in Molecular Biology and Translational Science“Cannabis sativa (cannabis) is one of the oldest plants cultivated by men. Cannabidiol (CBD) is the major non-psychomimetic compound derived from cannabis. It has been proposed to have a therapeutic potential over a wide range of neuropsychiatric disorders.

In this narrative review, we have summarized a selected number of pre-clinical and clinical studies, examining the effects of CBD in neuropsychiatric disorders. In some pre-clinical studies, CBD was demonstrated to potentially exhibit anti-epileptic, anti-oxidant, anti-inflammatory anti-psychotic, anxiolytic and anti-depressant properties. Moreover, CBD was shown to reduce addictive effects of some drugs of abuse.

In clinical studies, CBD was shown to be safe, well-tolerated and efficacious in mitigating the symptoms associated with several types of seizure disorders and childhood epilepsies.

Given that treatment with CBD alone was insufficient at managing choreic movements in patients with Huntington’s disease, other cannabis-derived treatments are currently being investigated. Patients with Parkinson’s disease (PD) have reported improvements in sleep and better quality of life with CBD; however, to fully elucidate the therapeutic potential of CBD on the symptoms of PD-associated movement disorders, larger scale, randomized, placebo-controlled studies still need to be conducted in the future.

Currently, there are no human studies that investigated the effects of CBD in either Alzheimer’s disease or unipolar depression, warranting further investigation in this area, considering that CBD was shown to have effects in pre-clinical studies.

Although, anxiolytic properties of CBD were reported in the Social Anxiety Disorder, antipsychotic effects in schizophrenia and anti-addictive qualities in alcohol and drug addictions, here too, larger, randomized, placebo-controlled trials are needed to evaluate the therapeutic potential of CBD.”

https://www.ncbi.nlm.nih.gov/pubmed/31601406

https://www.sciencedirect.com/science/article/pii/S187711731930095X?via%3Dihub

The potential role of cannabinoids in dermatology.

 Publication Cover“Cannabis is increasingly being used world-wide to treat a variety of dermatological conditions. Medicinal cannabis is currently legalized in Canada, 31 states in America and 19 countries in Europe. The authors reviewed the literature on the pharmacology and use of cannabinoids in treating a variety of skin conditions including acne, atopic dermatitis, psoriasis, skin cancer, pruritus, and pain. Cannabinoids have demonstrated anti-inflammatory, antipruritic, anti-ageing, and antimalignancy properties by various mechanisms including interacting with the newly found endocannabinoid system of the skin thereby providing a promising alternative to traditional treatments.”

https://www.ncbi.nlm.nih.gov/pubmed/31599175

https://www.tandfonline.com/doi/abs/10.1080/09546634.2019.1675854?journalCode=ijdt20

The Effects of Dosage-Controlled Cannabis Capsules on Cancer-Related Cachexia and Anorexia Syndrome in Advanced Cancer Patients: Pilot Study.

Image result for integrative cancer therapies“Cancer-related cachexia and anorexia syndrome (CACS) is a common phenomenon in cancer patients. Cannabis has been suggested to stimulate appetite but research on this issue has yielded mixed results. The current study aimed to evaluate the effect of dosage-controlled cannabis capsules on CACS in advanced cancer patients.

Methods: The cannabis capsules used in this study contained two fractions of oil-based compounds. The planned treatment was 2 × 10 mg per 24 hours for six months of tetrahydrocannabinol (THC) 9.5 mg and cannabidiol (CBD) 0.5 mg. If patients suffered from side effects, dosage was reduced to 5 mg × 2 per day (THC 4.75 mg, CBD 0.25 mg). Participants were weighed on every physician visit. The primary objective of the study was a weight gain of ≥10% from baseline.

Results: Of 24 patients who signed the consent form, 17 started the cannabis capsules treatment, but only 11 received the capsules for more than two weeks. Three of six patients who completed the study period met the primary end-point. The remaining three patients had stable weights. In quality of life quaternaries, patients reported less appetite loss after the cannabis treatment (p=0.05). Tumor necrosis factor-α (TNF-α) levels decreased after the cannabis treatment but without statistical significance. According to patients’ self-reports, improvement in appetite and mood as well as a reduction in pain and fatigue was demonstrated.

Conclusions: Despite various limitations, this preliminary study demonstrated a weight increase of ≥10% in 3/17 (17.6%) patients with doses of 5mgx1 or 5mgx2 capsules daily, without significant side effects. The results justify a larger study with dosage-controlled cannabis capsules in CACS.”

https://www.ncbi.nlm.nih.gov/pubmed/31595793

“The primary objective of the study was a weight gain of ≥10% from baseline. Despite various limitations, the current preliminary study demonstrated a weight increase of ≥10% in 3/17 (17.6%) of the patients with doses of 5 mg × 1 or 5 mg × 2 capsules daily, without significant side effects.”

https://journals.sagepub.com/doi/10.1177/1534735419881498

The effect of cannabis laws on opioid use.

International Journal of Drug Policy“Many Americans rely on opioids at varying dosages to help ameliorate their suffering. However, empirical evidence is mounting that opioids are ineffective at controlling non-cancer related chronic pain, and many argue the strategies meant to relieve patient suffering are contributing to the growing opioid epidemic.

Concurrently, several states now allow the use of medical cannabis to treat a variety of medical conditions, including chronic pain. Needing more exploration is the impact of cannabis laws on general opioid reliance and whether chronic pain sufferers are opting to use cannabis medicinally instead of opioids.

METHODS:

This study investigates the effect of Medical Marijuana Laws (MML)s on opioid use and misuse controlling for a number of relevant factors using data from several years of the National Survey on Drug Use and Health and multivariate logistic regression and longitudinal analysis strategies.

RESULTS:

Results provide evidence that MMLs may be effective at reducing opioid reliance as survey respondents living in states with medical cannabis legislation are much less apt to report using opioid analgesics than people living in states without such laws, net other factors. Results further indicate that the presence of medicinal cannabis legislation appears to have no influence over opioid misuse.

CONCLUSION:

MMLs may ultimately serve to attenuate the consequences of opioid overreliance.”

https://www.ncbi.nlm.nih.gov/pubmed/31590091

https://www.sciencedirect.com/science/article/abs/pii/S0955395919302567?via%3Dihub

Δ9-Tetrahydrocannabinol Derivative-Loaded Nanoformulation Lowers Intraocular Pressure in Normotensive Rabbits.

“Δ9-Tetrahydrocannabinol-valine-hemisuccinate, a hydrophilic prodrug of Δ9-tetrahydrocannabinol, synthesized with the aim of improving the ocular bioavailability of the parent molecule, was investigated in a lipid-based nanoparticle dosage form for ocular delivery.

RESULTS:

A peak intraocular pressure (IOP) drop of 30% from baseline was observed in rabbits treated with SLNs loaded with Δ9-tetrahydrocannabinol-valine-hemisuccinate at 90 minutes. Treated eyes of rabbits receiving Δ9-tetrahydrocannabinol-valine-hemisuccinate SLNs had significantly lower IOP than untreated eyes until 360 minutes, whereas the group receiving the emulsion formulation showed a drop in IOP until 90 minutes only. In comparison to marketed pilocarpine and timolol maleate ophthalmic solutions, Δ9-tetrahydrocannabinol-valine-hemisuccinate SLNs produced a greater effect on IOP in terms of both intensity and duration. In terms of tissue concentrations, significantly higher concentrations of Δ9-tetrahydrocannabinol-valine-hemisuccinate were observed in iris-ciliary bodies and retina-choroid with SLNs.

CONCLUSION:

Δ9-Tetrahydrocannabinol-valine-hemisuccinate formulated in a lipid-based nanoparticulate carrier shows promise in glaucoma pharmacotherapy.

TRANSLATIONAL RELEVANCE:

Glaucoma therapies usually focus on decreased aqueous humor production and increased outflow. However, such therapy is not curative, and there lies a need in preclinical research to focus efforts on agents that not only affect the aqueous humor dynamics but also provide neuroprotection. Historically, there have been bench-scale studies looking at retinal ganglion cell death post-axonal injury. However, for a smooth translation of this in vitro activity to the clinic, animal models examining IOP reduction, i.e., connecting the neuroprotective activity to a measurable outcome in glaucoma management (IOP), need to be investigated. This study investigated the IOP reduction efficacy of cannabinoids for glaucoma pharmacotherapy in a normotensive rabbit model, bringing forth a new class of agents with the potential of IOP reduction and improved permeation to the back of the eye, possibly providing neuroprotective benefits in glaucoma management.”

https://www.ncbi.nlm.nih.gov/pubmed/31588378

“THC has been demonstrated to be effective in glaucoma management, helping to lower IOP in human subjects after smoking marijuana; however, the molecule fails to manifest a similar effect when dosed topically. This research explores molecular bioengineering and formulation-based strategies to improve the ocular bioavailability of THC, facilitating the molecule to translate into a dosage form capable of demonstrating a desired IOP-lowering effect even on topical application. These studies suggest that formulation development efforts along with prodrug derivatization can effectively improve the overall ocular bioavailability of THC. Thus, THC-VHS represents a potential new therapy option for the treatment and management of glaucoma by virtue of its superiority in lowering IOP when compared to antiholinergic and beta blockers, as studied in this model.”