Treatment of Fragile X Syndrome with Cannabidiol: A Case Series Study and Brief Review of the Literature.

View details for Cannabis and Cannabinoid Research cover image

“Fragile X syndrome (FXS) is an X-linked dominant disorder caused by a mutation in the fragile X mental retardation 1 gene.

Cannabidiol (CBD) is an exogenous phytocannabinoid with therapeutic potential for individuals with anxiety, poor sleep, and cognitive deficits, as well as populations with endocannabinoid deficiencies, such as those who suffer from FXS.

The objective of this study was to provide a brief narrative review of recent literature on endocannabinoids and FXS and to present a case series describing three patients with FXS who were treated with oral CBD-enriched (CBD+) solutions.

We review recent animal and human studies of endocannabinoids in FXS and present the cases of one child and two adults with FXS who were treated with various oral botanical CBD+ solutions delivering doses of 32.0 to 63.9 mg daily. Multiple experimental and clinical models of FXS combine to highlight the therapeutic potential of CBD for management of FXS.

All three patients described in the case series exhibited functional benefit following the use of oral CBD+ solutions, including noticeable reductions in social avoidance and anxiety, as well as improvements in sleep, feeding, motor coordination, language skills, anxiety, and sensory processing. Two of the described patients exhibited a reemergence of a number of FXS symptoms following cessation of CBD+ treatment (e.g., anxiety), which then improved again after reintroduction of CBD+ treatment. Findings highlight the importance of exploring the therapeutic potential of CBD within the context of rigorous clinical trials.”

“The present findings, coupled with the available preclinical data, highlight the potential for CBD as an intervention for individuals with FXS. The existing literature combines to demonstrate that CBD may positively impact individuals with FXS through many mechanisms, including the endocannabinoid system, GABA, and serotonin. While a number of drugs have been developed to target specific systems (e.g., GABA agonists), CBD has the potential to yield a multifaceted benefit to individuals with FXS due to its multiple mechanisms of action.”

Nutritional Value of Commercial Protein-Rich Plant Products

Image result for springer plant foods

“The goal of this work was to analyze nutritional value of various minimally processed commercial products of plant protein sources such as faba bean (Vicia faba), lupin (Lupinus angustifolius), rapeseed press cake (Brassica rapa/napus subsp. Oleifera), flaxseed (Linum usitatissimum), oil hemp seed (Cannabis sativa), buckwheat (Fagopyrum esculentum), and quinoa (Chenopodium quinoa). All the samples studied have a nutritionally favorable composition with significant health benefit potential. In conclusion, nearly all the samples studied could be considered as good sources of protein, minerals and dietary fiber.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5956054/

Cannabidiol as adjunctive treatment of seizures associated with Lennox-Gastaut syndrome and Dravet syndrome.

“Epilepsy is one of the most common chronic disorders of the brain affecting around 70 million people worldwide. Treatment is mainly symptomatic, and most patients achieve long-term seizure control. Up to one-third of the affected subjects, however, are resistant to anticonvulsant therapy.

Lennox-Gastaut syndrome (LGS) and Dravet syndrome (DS) are severe, refractory epilepsy syndromes with onset in early childhood. Currently available interventions fail to control seizures in most cases, and there remains the need to identify new treatments.

Cannabidiol (CBD) is the first in a new class of antiepileptic drugs. It is a major chemical of the cannabis plant, which has antiseizure properties in absence of psychoactive effects.

This article provides a critical review of the pharmacology of CBD and the most recent clinical studies that evaluated its efficacy and safety as adjunctive treatment of seizures associated with LGS and DS.”

https://www.ncbi.nlm.nih.gov/pubmed/30938373

https://journals.prous.com/journals/servlet/xmlxsl/pk_journals.xml_summary_pr?p_JournalId=4&p_RefId=2909248&p_IsPs=N

Joints for joints: cannabinoids in the treatment of rheumatoid arthritis.

Image result for ovid journal

“An increasing number of patients with rheumatoid arthritis (RA) are using cannabis to treat their symptoms, although systematic studies regarding efficacy in RA are lacking. Within this review we will give an overview on the overall effects of cannabinoids in inflammation and why they might be useful in the treatment of RA.

RECENT FINDINGS:

Peripherally, cannabinoids show anti-inflammatory effects by activating cannabinoid type 2 receptors (CB2) which decrease cytokine production and immune cell mobilization. In contrast, cannabinoid type 1 receptor (CB1) activation on immune cells is proinflammatory while CB1 antagonism provides anti-inflammatory effects by increasing β2-adrenergic signaling in the joint and secondary lymphoid organs. In addition, the nonpsychotropic cannabinoid, cannabidiol (CBD) demonstrated antiarthritic effects independent of cannabinoid receptors. In addition to controlling inflammation, cannabinoids reduce pain by activating central and peripheral CB1, peripheral CB2 receptors and CBD-sensitive noncannabinoid receptor targets.

SUMMARY:

Cannabinoids might be a suitable treatment for RA, but it is important to target the right receptors in the right place. For clinical studies, we propose a combination of a CB2 agonist to decrease cytokine production, a peripheral CB1 antagonist to prevent detrimental CB1 signaling and to support anti-inflammatory effects of CB2 via activation of β2-adrenergic receptors and CBD to induce cannabinoid-receptor-independent anti-inflammatory effects.”

Investigating the Relationships Between Alcohol Consumption, Cannabis Use, and Circulating Cytokines: A Preliminary Analysis.

Alcoholism: Clinical and Experimental Research banner

“In recent years, human and animal studies have converged to support altered inflammatory signaling as a molecular mechanism underlying the pathophysiology of alcohol use disorders (AUDs). Alcohol binds to receptors on immune cells, triggering signaling pathways that produce pro-inflammatory cytokines. Chronic inflammation is associated with tissue damage, which may contribute to negative effects of AUD. Conversely, cannabis is associated with decreased inflammatory signaling, and animal studies suggest that cannabinoids may impact alcohol-induced inflammation. Thus, the impact of cannabis on inflammation in AUDs in humans warrants examination.

METHODS:

We explored the relationship between self-reported alcohol and cannabis use and circulating levels of the pro-inflammatory cytokines interleukin 6 (IL-6), IL-8, and IL-1β in the blood. Among 66 regular drinkers (mean age = 30.08), we examined circulating cytokines and administered questionnaires assessing alcohol consumption and days of cannabis use over the past 90 days. We examined whether alcohol consumption, cannabis use, and gender were associated with changes in circulating cytokines, and whether there was a significant interaction between alcohol and cannabis use predicting blood levels of circulating cytokines.

RESULTS:

A positive association between alcohol and IL-6 emerged. We also observed a negative association between cannabis and IL-1β. Follow-up moderation analyses indicated a cannabis by alcohol interaction predicting circulating IL-6, such that cannabis nonusers showed a stronger relationship between alcohol and IL-6 compared to cannabis users.

CONCLUSIONS:

These preliminary findings suggest that cannabinoid compounds may serve to mitigate inflammation associated with alcohol use. In addition, the present results provide data to inform future investigations, with the goal of ultimately leveraging knowledge of the role of inflammation in AUDs to develop more effective treatments focused on novel immune targets.”

https://www.ncbi.nlm.nih.gov/pubmed/29286537

https://onlinelibrary.wiley.com/doi/abs/10.1111/acer.13592

Safety, efficacy, and mechanisms of action of cannabinoids in neurological disorders.

The Lancet Neurology

“In the past two decades, there has been an increasing interest in the therapeutic potential of cannabinoids for neurological disorders such as epilepsy, multiple sclerosis, pain, and neurodegenerative diseases. Cannabis-based treatments for pain and spasticity in patients with multiple sclerosis have been approved in some countries. Randomised controlled trials of plant-derived cannabidiol for treatment of Lennox-Gastaut syndrome and Dravet syndrome, two severe childhood-onset epilepsies, provide evidence of anti-seizure effects. Despite positive results in these two severe epilepsy syndromes, further studies are needed to determine if the anti-seizure effects of cannabidiol extend to other forms of epilepsy, to overcome pharmacokinetic challenges with oral cannabinoids, and to uncover the exact mechanisms by which cannabidiol or other exogenous and endogenous cannabinoids exert their therapeutic effects.”

https://www.ncbi.nlm.nih.gov/pubmed/30910443

https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(19)30032-8/fulltext

Cannabidiol: Recent advances and new insights for neuropsychiatric disorders treatment.

Life Sciences

“The pharmacological research on the Cannabis sativa-derived compounds has never terminated. Among the phytocannabinoids without psychotropic effects, the prevalent one in Cannabis is cannabidiol (CBD). Although CBD was initially considered a type 2 cannabinoid receptor (CB2R) antagonist, it did not show a good cannabinoidergic activity. Furthermore, heterogeneous results were obtained in experimental animal models of anxiety disorders, psychotic stages and neurodegenerative diseases. Recently, CBD has been authorized by the FDA to treat some rare forms of epilepsy and many trials have begun for the treatment of autism spectrum disorders. This review aims to clarify the pharmacological activity of CBD and its multiple therapeutic applications. Furthermore, critical and conflicting results of the research on CBD are discussed with a focus on promising future prospects.”

https://www.ncbi.nlm.nih.gov/pubmed/30910646

https://www.sciencedirect.com/science/article/abs/pii/S0024320519302176?via%3Dihub

Oral administration of the cannabigerol derivative VCE-003.2 promotes subventricular zone neurogenesis and protects against mutant huntingtin-induced neurodegeneration.

 “The administration of certain cannabinoids provides neuroprotection in models of neurodegenerative diseases by acting through various cellular and molecular mechanisms. Many cannabinoid actions in the nervous system are mediated by CB1receptors, which can elicit psychotropic effects, but other targets devoid of psychotropic activity, including CB2 and nuclear PPARγ receptors, can also be the target of specific cannabinoids.

METHODS:

We investigated the pro-neurogenic potential of the synthetic cannabigerol derivative, VCE-003.2, in striatal neurodegeneration by using adeno-associated viral expression of mutant huntingtin in vivo and mouse embryonic stem cell differentiation in vitro.

RESULTS:

Oral administration of VCE-003.2 protected striatal medium spiny neurons from mutant huntingtin-induced damage, attenuated neuroinflammation and improved motor performance. VCE-003.2 bioavailability was characterized and the potential undesired side effects were evaluated by analyzing hepatotoxicity after chronic treatment. VCE-003.2 promoted subventricular zone progenitor mobilization, increased doublecortin-positive migrating neuroblasts towards the injured area, and enhanced effective neurogenesis. Moreover, we demonstrated the proneurogenic activity of VCE-003.2 in embryonic stem cells. VCE-003.2 was able to increase neuroblast formation and striatal-like CTIP2-mediated neurogenesis.

CONCLUSIONS:

The cannabigerol derivative VCE-003.2 improves subventricular zone-derived neurogenesis in response to mutant huntingtin-induced neurodegeneration, and is neuroprotective by oral administration.”

https://www.ncbi.nlm.nih.gov/pubmed/30899454

https://translationalneurodegeneration.biomedcentral.com/articles/10.1186/s40035-019-0148-x

Cannabidiol attenuates mechanical allodynia in streptozotocin-induced diabetic rats via serotonergic system activation through 5-HT1A receptors.

Brain Research

“Most diabetic patients describe moderate to severe pain symptoms whose pharmacological treatment is palliative and poorly effective. Cannabidiol (CBD) has shown promising results in painful conditions. Then, we aimed to investigate the potential antinociceptive effect of CBD over the mechanical allodynia in streptozotocin-induced diabetic (DBT) rats, as well as its involved mechanisms. Wistar adult male diabetic rats were treated acutely or sub-chronically (for 14 days) with CBD (0.1, 0.3 or 3 mg/Kg, intraperitoneal; i.p.) and had their mechanical threshold assessed using the electronic Von Frey. Acute treatment with CBD (at doses of 0.3 and 3 mg/Kg) exerted a significant anti-allodynic effect, which is not associated with locomotor impairment. The antinociceptive effect of CBD (3 mg/Kg) was not altered by the pre-treatment with CB1 or CB2 receptor antagonists (AM251 and AM630; respectively; both at a dose of 1 mg/kg, i.p.) nor by glycine receptor antagonist (strychnine hydrochloride, 10 μg/rat, intrathecal, i.t.). However, this effect was completely prevented by the pre-treatment with the selective 5-HT1A receptor antagonist WAY 100135 (3 μg/rat, i.t.). Sub-chronic treatment with CBD (0.3 or 3 mg/Kg) induced a sustained attenuation of the mechanical allodynia in DBT rats. DBT rats presented significantly lower spinal cord levels of serotonin, which was prevented by the daily treatment with CBD (0.3 mg/Kg). Taken together, our data suggest that CBD may be effective in the treatment of painful diabetic neuropathy and this effect seems to be potentially mediated by the serotonergic system activation through 5-HT1A receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/30898678

https://www.sciencedirect.com/science/article/pii/S0006899319301532?via%3Dihub

The Effect of Medical Marijuana Laws on the Health and Labor Supply of Older Adults: Evidence from the Health and Retirement Study

 Journal of Policy Analysis and Management banner

“Older adults are at elevated risk of reducing labor supply due to poor health, partly because of high rates of symptoms that may be alleviated by medical marijuana. Yet, surprisingly little is known about how this group responds to medical marijuana laws (MMLs). We quantify the effects of state medical marijuana laws on the health and labor supply of adults age 51 and older, focusing on the 55 percent with one or more medical conditions with symptoms that may respond to medical marijuana. We use longitudinal data from the Health and Retirement Study to estimate event study and differences‐in‐differences regression models. Three principle findings emerge from our analysis. First, active state medical marijuana laws lead to lower pain and better self‐assessed health among older adults. Second, state medical marijuana laws lead to increases in older adult labor supply, with effects concentrated on the intensive margin. Third, the effects of MMLs are largest among older adults with a health condition that would qualify for legal medical marijuana use under current state laws. Findings highlight the role of health policy in supporting work among older adults and the importance of including older adults in assessments of state medical marijuana laws.”

https://onlinelibrary.wiley.com/doi/10.1002/pam.22122

https://www.jhsph.edu/news/news-releases/2019/medical-marijuana-laws-linked-to-health-and-labor-supply-benefits-in-older-adults.html?fbclid=IwAR2X_qV1jKU4Hj41KBHAr25o20CBZrWEIqfkcxCxzepC_2NLvsSRxeCNA9g

“Medical marijuana may increase productivity in older adults, Johns Hopkins study suggests” https://www.news5cleveland.com/news/national/medical-marijuana-may-increase-productivity-in-older-adults-johns-hopkins-study-suggests