Opposing actions of endocannabinoids on cholangiocarcinoma growth: recruitment of Fas and Fas ligand to lipid rafts.

The Journal of Biological Chemistry

“Cholangiocarcinomas are devastating cancers of biliary origin with limited treatment options…

Marijuana and its derivatives have been used in medicine for many centuries, and presently there is an emerging renaissance in the study of the therapeutic effects of cannabinoids…

In addition, cannabinoids might be effective antitumoral agents because of their ability to inhibit the growth of various types of cancer cell lines in culture and in laboratory animals.

Modulation of the endocannabinoid system is being targeted to develop possible therapeutic strategies for a number of cancers; therefore, we evaluated the effects of the two major endocannabinoids, anandamide and 2-arachidonylglycerol, on numerous cholangiocarcinoma cell lines…

These findings suggest that modulation of the endocannabinoid system may be a target for the development of possible therapeutic strategies for the treatment of this devastating cancer.

Consistent with our observation that AEA has antiproliferative and proapoptotic properties, cannabinoids of various origins (endogenous, plant-derived, or synthetic analogues) have been shown to suppress cancer cell growth in vitro as well as in vivo.

In conclusion, we have clearly demonstrated opposing actions of the endocannabinoids AEA and 2-AG on cholangiocarcinoma cell proliferation and have shown that these actions are via a cannabinoid receptor-independent but lipid raft-mediated pathway. Furthermore we have shown that the antiproliferative/proapoptotic actions of AEA are mediated via an accumulation of ceramide and the recruitment of the Fas death receptor into the lipid rafts. Cholangiocarcinoma has a very poor prognosis and survival rate; therefore we propose that the development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA would prove beneficial for the treatment of this devastating disease.”

http://www.jbc.org/content/282/17/13098.long

Cannabinoid and nitric oxide signalling interplay in the modulation of hippocampal hyperexcitability: study on electrophysiological and behavioural models of temporal lobe epilepsy in the rat.

“A growing bulk of evidence suggests that cannabinoid system plays a pivotal role in the control of hyperexcitability phenomena.

Notwithstanding, the anticonvulsant action of cannabinoids has not been fully addressed, in particular the involvement of potential cellular neuromodulators, for instance nitric oxide.

In the current study, we focused on two distinct rat models of temporal lobe epilepsy, the Maximal Dentate Activation and the Pilocarpine-induced acute seizures, providing both electrophysiological and behavioural data on cannabinoid and nitrergic system interplay.

MDA study showed that these drugs protected animals in a dose-dependent manner from electrically-induced epileptiform discharges.

In the light of this, our findings suggest a putative antagonism between CBr-activated pathway and NO signalling in the context of neuronal hyperexcitability and contribute to elucidate possible synaptic processes underlying neuroprotective properties of cannabinoids, with a view to better integrate antiepileptic therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/26135674

Sperm Release from the Oviductal Epithelium Depends on Ca2+ Influx Upon Activation of CB1 and TRPV1 by Anandamide.

“The oviduct acts as a functional sperm reservoir in many mammalian species. Both binding and release of spermatozoa from the oviductal epithelium are mainly modulated by sperm capacitation. Several molecules from oviductal fluid are involved in the regulation of sperm function.

Anandamide is a lipid mediator involved in reproductive physiology. Previously, we demonstrated that anandamide, through activation of the cannabinoid receptor type 1 (CB1), promotes sperm release from bovine oviductal epithelial cells, and through CB1 and the transient receptor potential vanilloid 1 (TRPV1), induces sperm capacitation.

Our results also suggest that a phospholypase C (PLC) might mediate the activation of CB1 and TRPV1 in sperm release from the bovine oviduct.

Therefore, our findings indicate that anandamide, through CB1 and TRPV1 activation, is involved in sperm release from the oviductal reservoir. An increase of sperm Ca2+ levels and the PLC activation might be involved in anandamide signaling pathway. ”

http://www.ncbi.nlm.nih.gov/pubmed/26129689

Endocannabinoid signaling in female reproductive events: a potential therapeutic target?

“Nearly 30 years after the discovery in 1964 of the psychoactive ingredient of cannabis (Cannabis sativa), Δ9-tetrahydrocannabinol, its endogenous counterparts were discovered and collectively termed endocannabinoids (eCBs): N-arachidonoylethanolamine (anandamide) in 1992 and 2-arachidonoylglycerol in 1995.

Since then, intense research has identified additional eCBs and an ensemble of proteins that bind, synthesize and degrade them, the so-called eCB system.

Altogether, these new compounds have been recognized as key mediators of several aspects of human pathophysiology, and in particular of female fertility.

Here, the main features of the eCB system are presented, in order to put in a better perspective the relevance of eCB signaling in virtually all steps of human reproduction and to highlight emerging hopes that elements of this system might indeed become novel targets to combat fertility problems.”

http://www.ncbi.nlm.nih.gov/pubmed/26126134

Roles for the endocannabinoid system in ethanol-motivated behavior.

“Alcohol use disorder represents a significant human health problem that leads to substantial loss of human life and financial cost to society. Currently available treatment options do not adequately address this human health problem, and thus, additional therapies are desperately needed.

The endocannabinoid system has been shown, using animal models, to modulate ethanol-motivated behavior, and it has also been demonstrated that chronic ethanol exposure can have potentially long-lasting effects on the endocannabinoid system.

For example, chronic exposure to ethanol, in either cell culture or preclinical rodent models, causes an increase in endocannabinoid levels that results in down-regulation of the cannabinoid receptor 1 (CB1) and uncoupling of this receptor from downstream G protein signaling pathways.

Using positron emission tomography (PET), similar down-regulation of CB1 has been noted in multiple regions of the brain in human alcoholic patients.

In rodents, treatment with the CB1 inverse agonist SR141716A (Rimonabant), or genetic deletion of CB1 leads to a reduction in voluntary ethanol drinking, ethanol-stimulated dopamine release in the nucleus accumbens, operant self-administration of ethanol, sensitization to the locomotor effects of ethanol, and reinstatement/relapse of ethanol-motivated behavior.

Although the clinical utility of Rimonabant or other antagonists/inverse agonists for CB1 is limited due to negative neuropsychiatric side effects, negative allosteric modulators of CB1 and inhibitors of endocannabinoid catabolism represent therapeutic targets worthy of additional examination.”

CB2 receptor agonists protect human dopaminergic neurons against damage from HIV-1 gp120.

Logo of plosone

“The global pandemic of HIV infection currently afflicts 34 million individuals, has killed over 25 million people since 1981, and is the cause of death in an estimated 1.8 million people per year.

Despite the therapeutic impact of anti-retroviral therapy, HIV-1-associated neurocognitive disorder (HAND) remains a serious threat to AIDS patients…

Synthetic cannabinoids inhibit HIV-1 expression in human microglia, suppress production of inflammatory mediators in human astrocytes, and there is substantial literature demonstrating the neuroprotective properties of cannabinoids in other neuropathogenic processes.

Based on these data, experiments were designed to test the hypothesis that synthetic cannabinoids will protect dopaminergic neurons against the toxic effects of the HIV-1 protein gp120. Using a human mesencephalic neuronal/glial culture model…

These data suggest that synthetic cannabinoids are capable of protecting human dopaminergic neurons from gp120 in a variety of ways, acting principally through the CB2 receptors and microglia.

Overall, this study confirms that gp120 is capable of damaging human dopaminergic neurons, that this damage involves human microglia, and that synthetic cannabinoids can alleviate this damage through mechanisms involving human microglia.

Thus, the results of these experiments set the stage for further studies designed to tease out the role human microglia have in the mechanisms underlying the toxic effects of HIV-1 on human dopaminergic neurons and understanding the microglial-centered mechanisms underlying the protective effects of selected synthetic cannabinoids.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798286/

Activation of cannabinoid receptors prevents antigen-induced asthma-like reaction in guinea pigs.

“In this study we evaluated the effects of the CB1/CB2 cannabinoid receptor agonist on antigen-induced asthma-like reaction in sensitized guinea pigs…

These findings suggest that targeting cannabinoid receptors could be a novel preventative therapeutic strategy in asthmatic patients.”

http://www.ncbi.nlm.nih.gov/pubmed/18266975

The endogenous cardiac cannabinoid system: a new protective mechanism against myocardial ischemia.

“The pharmacological (and recreational) effects of cannabis have been known for centuries. However, it is only recently that one has identified two subtypes of G-protein-coupled receptors, namely CB1 and CB2-receptors, which mediate the numerous effects of delta9-tetrahydrocannabinol and other cannabinoids.

Logically, the existence of cannabinoid-receptors implies that endogenous ligands for these receptors (endocannabinoids) exist and exert a physiological role. Hence, arachidonoylethanolamide (anandamide) and sn-2 arachidonoylglycerol, the first two endocannabinoids identified, are formed from plasma membrane phospholipids and act as CB1 and/or CB2 agonists.

The presence of both CB1 and CB2-receptors in the rat heart is noteworthy.

This endogenous cardiac cannabinoid system is involved in several phenomena associated with cardioprotective effects.

The reduction in infarct size following myocardial ischemia, observed in rats exposed to either LPS or heat stress 24 hours before, is abolished in the presence of a CB2-receptor antagonist.

Endocannabinoids and synthetic cannabinoids, the latter through either CB1 or CB2-receptors, exert direct cardioprotective effects in rat isolated hearts.

The ability of cannabinoids to reduce infarct size has been confirmed in vivo in anesthetized mice and rats. This latter effect appears to be mediated through CB2-receptors.

Thus, the endogenous cardiac cannabinoid system, through activation of CB2-receptors, appears to be an important mechanism of protection against myocardial ischemia.”

https://pubmed.ncbi.nlm.nih.gov/16618028

Delta-9-tetrahydrocannabinol protects cardiac cells from hypoxia via CB2 receptor activation and nitric oxide production.

“Delta-9-tetrahydrocannabinol (THC), the major active component of marijuana, has a beneficial effect on the cardiovascular system during stress conditions…

The present study was designed to investigate the central (CB1) and the peripheral (CB2)cannabinoid receptor expression in neonatal cardiomyoctes and possible function in the cardioprotection of THC from hypoxia.

The antagonist for the CB2, but not CB1 receptor antagonist abolished the protective effect of THC.

In agreement with these results using RT-PCR, it was shown that neonatal cardiac cells express CB2, but not CB1 receptors.

Involvement of NO in the signal transduction pathway activated by THC through CB2 was examined. It was found that THC induces nitric oxide (NO) production by induction of NO synthase (iNOS) via CB2 receptors.

L-NAME (NOS inhibitor, 100 microM) prevented the cardioprotection provided by THC.

Taken together, our findings suggest that THC protects cardiac cells against hypoxia via CB2 receptor activation by induction of NO production.

An NO mechanism occurs also in the classical pre-conditioning process; therefore, THC probably pre-trains the cardiomyocytes to hypoxic conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/16444588

Cannabidiol, a nonpsychoactive Cannabis constituent, protects against myocardial ischemic reperfusion injury

Heart and Circulatory Physiology

“CANNABINOIDS ARE NATURAL and synthetic compounds structurally or pharmacologically related to the constituents of the plant Cannabis sativa or to the endogenous agonists (endocannabinoids) of the cannabinoid CB1 and CB2 receptors.

Cannabidiol (CBD) is a major cannabinoid constituent of Cannabis.

In contrast to tetrahydrocannabinol, CBD binds very weakly to CB1 and CB2 receptors. Contrary to most cannabinoids, CBD does not induce psychoactive or cognitive effects.

CBD has been shown to have anti-inflammatory properties. CBD (together with tetrahydrocannabinol) has been successfully tested in a few preliminary human trials related to autoimmune diseases…

Cannabidiol (CBD) is a major, nonpsychoactive Cannabis constituent with anti-inflammatory activity mediated by enhancing adenosine signaling.

Inasmuch as adenosine receptors are promising pharmaceutical targets for ischemic heart diseases, we tested the effect of CBD on ischemic rat hearts.

Our study shows that CBD induces a substantial in vivo cardioprotective effect from ischemia that is not observed ex vivo.

Inasmuch as CBD has previously been administered to humans without causing side effects, it may represent a promising novel treatment for myocardial ischemia.”

http://ajpheart.physiology.org/content/293/6/H3602