Expression and Function of the Endocannabinoid System in the Retina and the Visual Brain.

“Endocannabinoids are important retrograde modulators of synaptic transmission throughout the nervous system.

Cannabinoid receptors are seven transmembrane G-protein coupled receptors favoring Gi/o protein. They are known to play an important role in various processes, including metabolic regulation, craving, pain, anxiety, and immune function.

In the last decade, there has been a growing interest for endocannabinoids in the retina and their role in visual processing.

The purpose of this review is to characterize the expression and physiological functions of the endocannabinoid system in the visual system, from the retina to the primary visual cortex, with a main interest regarding the retina, which is the best-described area in this system so far.

It will show that the endocannabinoid system is widely present in the retina, mostly in the through pathway where it can modulate neurotransmitter release and ion channel activity, although some evidence also indicates possible mechanisms via amacrine, horizontal, and Müller cells.

The presence of multiple endocannabinoid ligands, synthesizing and catabolizing enzymes, and receptors highlights various pharmacological targets for novel therapeutic application to retinal diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/26839718

Cannabinoid receptor 2 and its agonists mediate hematopoiesis and hematopoietic stem and progenitor cell mobilization.

“Endocannabinoids are arachidonic acid derivatives and part of a novel bioactive lipid signaling system, along with their G-coupled cannabinoid receptors (CB₁ and CB₂) and the enzymes involved in their biosynthesis and degradation.

However, their roles in hematopoiesis and hematopoietic stem and progenitor cell (HSPC) functions are not well characterized. Here, we show that bone marrow stromal cells express endocannabinoids (anandamide and 2-arachidonylglycerol), whereas CB₂ receptors are expressed in human and murine HSPCs.

On ligand stimulation with CB₂ agonists, CB₂ receptors induced chemotaxis, migration, and enhanced colony formation of bone marrow cells, which were mediated via ERK, PI3-kinase, and Gαi-Rac1 pathways.

Taken together, these results demonstrate that the endocannabinoid system is involved in hematopoiesis and that CB₂/CB₂ agonist axis mediates repopulation of hematopoiesis and mobilization of HSPCs.

Thus, CB₂ agonists may be therapeutically applied in clinical conditions, such as bone marrow transplantation.”

http://www.ncbi.nlm.nih.gov/pubmed/21063029

RGS proteins as targets in the treatment of intestinal inflammation and visceral pain: New insights and future perspectives.

“Regulators of G protein signaling (RGS) proteins provide timely termination of G protein-coupled receptor (GPCR) responses. Serving as a central control point in GPCR signaling cascades, RGS proteins are promising targets for drug development. In this review, we discuss the involvement of RGS proteins in the pathophysiology of the gastrointestinal inflammation and their potential to become a target for anti-inflammatory drugs. Specifically, we evaluate the emerging evidence for modulation of selected receptor families: opioid, cannabinoid and serotonin by RGS proteins. We discuss how the regulation of RGS protein level and activity may modulate immunological pathways involved in the development of intestinal inflammation. Finally, we propose that RGS proteins may serve as a prognostic factor for survival rate in colorectal cancer. The ideas introduced in this review set a novel conceptual framework for the utilization of RGS proteins in the treatment of gastrointestinal inflammation, a growing major concern worldwide.”

http://www.ncbi.nlm.nih.gov/pubmed/26817719

Ligands for cannabinoid receptors, promising anticancer agents.

Image result for Life Sci.

“Cannabinoid compounds are unique to cannabis and provide some interesting biological properties.

These compounds along with endocannabinoids, a group of neuromodulator compounds in the body especially in brain, express their effects by activation of G-protein-coupled cannabinoid receptors, CB1 and CB2.

There are several physiological properties attributed to the endocannabinoids including pain relief, enhancement of appetite, blood pressure lowering during shock, embryonic development, and blocking of working memory.

On the other hand, activation of endocannabinoid system may be suppresses evolution and progression of several types of cancer.

According to the results of recent studies, CB receptors are over-expressed in cancer cell lines and application of multiple cannabinoid or cannabis-derived compounds reduce tumor size through decrease of cell proliferation or induction of cell cycle arrest and apoptosis along with desirable effect on decrease of tumor-evoked pain.

Therefore, modulation of endocannabinoid system by inhibition of fatty acid amide hydrolase (FAAH), the enzyme, which metabolized endocannabinoids, or application of multiple cannabinoid or cannabis-derived compounds, may be appropriate for the treatment of several cancer subtypes. This review focuses on how cannabinoid affect different types of cancers.”

http://www.ncbi.nlm.nih.gov/pubmed/26764235

http://www.thctotalhealthcare.com/category/cancer/

GPR55 – a putative “type 3” cannabinoid receptor in inflammation.

“G protein-coupled receptor 55 (GPR55) shares numerous cannabinoid ligands with CB1 and CB2 receptors despite low homology with those classical cannabinoid receptors. The pharmacology of GPR55 is not yet fully elucidated; however, GPR55 utilizes a different signaling system and downstream cascade associated with the receptor.

Therefore, GPR55 has emerged as a putative “type 3″ cannabinoid receptor, establishing a novel class of cannabinoid receptor.

Furthermore, the recent evidence of GPR55-CB1 and GPR55-CB2 heteromerization along with its broad distribution from central nervous system to peripheries suggests the importance of GPR55 in various cellular processes and pathologies and as a potential therapeutic target in inflammation.”

 http://www.ncbi.nlm.nih.gov/pubmed/26669245

Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development.

“The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2) which have been explored as potential therapeutic targets for drug discovery and development.

Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ9-tetrahydrocannabinol mediates its action through CB1/CB2receptors.

In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems.

Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative.

The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics.”

Computational Prediction and Biochemical Analyses of New Inverse Agonists for the CB1 Receptor.

“Human cannabinoid type 1 (CB1) G-protein coupled receptor is a potential therapeutic target for obesity.

The previously predicted and experimentally validated ensemble of ligand-free conformations of CB1 are used here to predict the binding sites for known CB1-selective inverse agonists including rimonabant and its seven known derivatives.

This binding pocket, which differs significantly from previously published models, is used to identify 16 novel compounds expected to be CB1 inverse agonists by exploiting potential new interactions.

We show experimentally that two of these compounds exhibit inverse agonist properties including inhibition of basal and agonist-induced G-protein coupling activity, as well as an enhanced level of CB1 cell surface localization.

This demonstrates the utility of using the predicted binding sites for an ensemble of CB1 receptor structures for designing new CB1 inverse agonists.”

The Cannabinoid Receptor CB1 Interacts with the WAVE1 Complex and Plays a Role in Actin Dynamics and Structural Plasticity in Neurons.

“The molecular composition of the cannabinoid type 1 (CB1) receptor complex beyond the classical G-protein signaling components is not known.

Using proteomics on mouse cortex in vivo, we pulled down proteins interacting with CB1 in neurons and show that the CB1 receptor assembles with multiple members of the WAVE1 complex and the RhoGTPase Rac1 and modulates their activity…

This study reports novel signaling mechanisms for cannabinoidergic modulation of the nervous system and demonstrates a previously unreported role for the WAVE1 complex in therapeutic applications of cannabinoids.”

http://www.ncbi.nlm.nih.gov/pubmed/26496209

GPR55 promotes migration and adhesion of colon cancer cells indicating a role in metastasis.

“Tumor cell migration and adhesion constitute essential features of metastasis. G protein-coupled receptor 55 (GPR55), a lysophospholipid receptor, has been shown to play an important role in carcinogenesis. Here, we investigated the involvement of GPR55 in migration and metastasis of colon cancer cells.

GPR55 antagonist CID16020046, cannabidiol, a putative GPR55 antagonist, and GPR55 siRNA were used to block GPR55 activity in HCT116 colon cancer cells.

In a mouse model of metastasis, the arrest of HCT116 cancer cells in the liver was reduced after treatment with CID16020046 or cannabidiol.

CONCLUSIONS AND IMPLICATIONS:

GPR55 is involved in the migratory behavior of colon carcinoma cells and may serve as a pharmacological target for the prevention of metastasis.”

http://www.ncbi.nlm.nih.gov/pubmed/26436760

“Pharmacological Characterization of GPR55, A Putative Cannabinoid Receptor”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874616/ 

Endocannabinoids and the Immune System in Health and Disease.

“Endocannabinoids are bioactive lipids that have the potential to signal through cannabinoid receptors to modulate the functional activities of a variety of immune cells.

Their activation of these seven-transmembranal, G protein-coupled receptors sets in motion a series of signal transductional events that converge at the transcriptional level to regulate cell migration and the production of cytokines and chemokines.

There is a large body of data that supports a functional relevance for 2-arachidonoylglycerol (2-AG) as acting through the cannabinoid receptor type 2 (CB2R) to inhibit migratory activities for a diverse array of immune cell types.

However, unequivocal data that supports a functional linkage of anandamide (AEA) to a cannabinoid receptor in immune modulation remains to be obtained.

Endocannabinoids, as typical bioactive lipids, have a short half-life and appear to act in an autocrine and paracrine fashion.

Their immediate effective action on immune function may be at localized sites in the periphery and within the central nervous system.

It is speculated that endocannabinoids play an important role in maintaining the overall “fine-tuning” of the immune homeostatic balance within the host.”

http://www.ncbi.nlm.nih.gov/pubmed/26408161