Editorial: The CB2 Cannabinoid System: A New Strategy in Neurodegenerative Disorder and Neuroinflammation

Image result for frontiers in neuroscience

“The cannabinoid receptors subtype 2 (CB2R) are emerging as novel targets for the development of new therapeutic approaches and PET probes useful to early diagnose neuroinflammation as first step in several neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson disease (PD).

This Research Topic is mainly focused on the involvment of CB2R in neurodegenerative disorders and on the usefulness of CB2R ligands in the therapy and early diagnosis of neuroinflammation as onset of neurodegeneration.

In the reviews of Aso and Ferrer and Cassano et al. an interesting and exaustive overview of the endogenous cannabinoid signaling and its role in neuroinflammation and neurogenesis is reported. The potential of CB2R as therapeutic target in AD is argued by several evidences derived by robust experimental models and the effects modulated by CB2R agonists on different pathways involved in the pathogenesis of AD are discussed; indeed, these ligands are able to reduce inflammation, Aβ production and deposition, tau protein hyper-phosphorylation and oxidative stress damage caused by Aβ peptides. CB2R agonists are also able to induce Aβ clearance leading to cognitive improvement in AD models.

In conclusion, considering that neuroinflammation has been widely reported as indicator and modulator of neurodegeneration, the reduction of the neuroinflammatory responses could be considered as a new therapeutic strategy in these diseases. Moreover, the selective CB2R overexpression on the activated-microglial cells provides also a highly specialized target useful to an early diagnosis of the neurodegenerative diseases.”

http://journal.frontiersin.org/article/10.3389/fnins.2017.00196/full]]>

Neurological aspects of medical use of cannabidiol.

“Cannabidiol (CBD) is among the major secondary metabolites of Cannabis devoid of the delta-9-tetra-hydrocannabinol psychoactive effects. It is a resorcinol-based compound with a broad spectrum of potential therapeutic properties, including neuroprotective effects in numerous pathological conditions. CBD neuroprotection is due to its antioxidant and antiinflammatory activi-ties and the modulation of a large number of brain biological targets (receptors, channels) involved in the development and maintenance of neurodegenerative diseases.

OBJECTIVE:

Aim of the present review was to describe the state of art about the pre-clinical research, the potential use and, when existing, the clinical evidence related to CBD in the neurological field.

RESULTS:

Laboratory and clinical studies on the potential role of CBD in Parkinson’s disease (PD), Alzheimer’s disease (AD), multiple sclerosis (MS), Huntington’s disease (HD), amyotrophic lateral sclerosis ALS), cerebral ischemia, were examined.

CONCLUSIONS:

Pre-clinical evidence largely shows that CBD can produce beneficial effects in AD, PD and MS patients, but its employment for these disorders needs further confirmation from well designed clinical studies. CBD pre-clinical demonstration of antiepileptic activity is supported by recent clinical studies in human epileptic subjects resistant to standard antiepileptic drugs showing its potential use in children and young adults affected by refractory epilepsy. Evidence for use of CBD in PD is still not supported by sufficient data whereas only a few studies including a small number of patients are available.” https://www.ncbi.nlm.nih.gov/pubmed/28412918]]>

Loss of Cannabinoid CB 1 Receptors Induces Cortical Migration Malformations and Increases Seizure Susceptibility.

“Neuronal migration is a fundamental process of brain development, and its disruption underlies devastating neurodevelopmental disorders. The transcriptional programs governing this process are relatively well characterized. However, how environmental cues instruct neuronal migration remains poorly understood. Here, we demonstrate that the cannabinoid CB 1 receptor is strictly required for appropriate pyramidal neuron migration in the developing cortex. Acute silencing of the CB 1 receptor alters neuronal morphology and impairs radial migration. Consequently, CB 1 siRNA-electroporated mice display cortical malformations mimicking subcortical band heterotopias and increased seizure susceptibility in adulthood. Importantly, rescuing the CB 1 deficiency-induced radial migration arrest by knockdown of the GTPase protein RhoA restored the hyperexcitable neuronal network and seizure susceptibility. Our findings show that CB 1 receptor/RhoA signaling regulates pyramidal neuron migration, and that deficient CB 1 receptor signaling may contribute to cortical development malformations leading to refractory epilepsy independently of its canonical neuromodulatory role in the adult brain.” https://www.ncbi.nlm.nih.gov/pubmed/28334226]]>

Neuroprotective effect of WIN55,212-2 against 3-nitropropionic acid-induced toxicity in the rat brain: involvement of CB1 and NMDA receptors.

 Image result for Am J Transl Res “The endocannabinoid system (ECS), and agonists acting on cannabinoid receptors (CBr), are known to regulate several physiological events in the brain, including modulatory actions on excitatory events probably through N-methyl-D-aspartate receptor (NMDAr) activity. Actually, CBr agonists can be neuroprotective. Our results demonstrate a protective role of WIN55,212-2 on the 3-NP-induced striatal neurotoxicity that could be partially related to the ECS stimulation and induction of NMDAr hypofunction, representing an effective therapeutic strategy at the experimental level for further studies.” https://www.ncbi.nlm.nih.gov/pubmed/28337258
]]>