“Cannabis sativa active compounds are extensively studied for their therapeutic effects, beyond the well-known psychotropic activity. C. Sativa is used to treat different medical indications, such as multiple sclerosis, spasticity, epilepsy, ulcerative colitis and pain. Simultaneously, basic research is discovering new constituents of cannabis-derived compounds and their receptors capable of neuroprotection and neuronal activity modulation. The function of the various phytochemicals in different therapeutic processes is not fully understood, but their significant role is starting to emerge and be appreciated. In this review, we will consider the structure-activity relationship (SAR) of cannabinoid compounds able to bind to cannabinoid receptors and act as therapeutic agents in neuronal diseases, e.g., Parkinson’s disease.” https://www.ncbi.nlm.nih.gov/pubmed/29941830 http://www.mdpi.com/1420-3049/23/7/1526]]>
Tag Archives: neuroprotection
Cannabidiol as a Promising Strategy to Treat and Prevent Movement Disorders?
“Movement disorders such as Parkinson’s disease and dyskinesia are highly debilitating conditions linked to oxidative stress and neurodegeneration. When available, the pharmacological therapies for these disorders are still mainly symptomatic, do not benefit all patients and induce severe side effects. Cannabidiol is a non-psychotomimetic compound from Cannabis sativa that presents antipsychotic, anxiolytic, anti-inflammatory, and neuroprotective effects. Although the studies that investigate the effects of this compound on movement disorders are surprisingly few, cannabidiol emerges as a promising compound to treat and/or prevent them. Here, we review these clinical and pre-clinical studies and draw attention to the potential of cannabidiol in this field.”
https://www.ncbi.nlm.nih.gov/pubmed/29867488
The biomedical challenge of neurodegenerative disorders: an opportunity for cannabinoid-based therapies to improve on the poor current therapeutic outcomes.
“At the beginning of the 21st century, the therapeutic management of neurodegenerative disorders remains a major biomedical challenge, particularly given the worldwide aging of the population over the past 50 years that is expected to continue in the forthcoming years.
This review will focus on the promise of cannabinoid based therapies to address this challenge.
Such promise is based on the broad neuroprotective profile of cannabinoids, which may cooperate to combat excitotoxicity, oxidative stress, glia-driven inflammation and protein aggregation.
Such effects may be produced by the activity of cannabinoids through their canonical targets (e.g. cannabinoid receptors, endocannabinoid enzymes) but also, via non-canonical elements and activities in distinct cell types critical for cell survival or neuronal replacement (e.g. neurons, glia, neural precursor cells).
Ultimately, the therapeutic events driven by endocannabinoid signalling reflect the activity of an endogenous system that regulates the preservation, rescue, repair and replacement of neurons and glia.”
https://www.ncbi.nlm.nih.gov/pubmed/29856067
https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14382
“The endocannabinoid system (ECS) actively participates in several physiological processes within the central nervous system.
Among such, its involvement in the downregulation of the N-methyl-D-aspartate receptor (NMDAr) through a modulatory input at the
“Tumor necrosis factor-α (TNF-α) is an established pain modulator in the peripheral nervous system. Elevated levels of TNF-α in dorsal root ganglion (DRG) neurons reportedly is critical for neuropathic pain processing. It has been shown that the production of nitric oxide, a key player in the development and maintenance of nociception, depends on the expression of nitric oxide synthases (NOSs) and their activities.
Accumulating evidence also supports an important role of cannabinoids in modulating neuropathic pain.
In this study, we explored the effects and the underlying mechanisms of crosstalk between TNF-α and cannabinoid on the expression/activity of NOS in DRG neurons.
Our findings suggest that TNF-α induces the expression/activity of nNOS in DRG neurons by increasing its mRNA stability by a p38 MAPK-dependent mechanism; WIN-55 inhibits this effect of TNF-α by inhibiting p38 MAPK via CB2.
By linking the functions of TNF-α, NOS and cannabinoid in DRG neurons, this study adds new insights into the molecular mechanisms underlying the pharmacologic effects of cannabinoids on neuropathic pain as well as into the pathophysiology of neuropathic pain.”
“The pharmacological importance of cannabidiol (CBD) has been in study for several years.
CBD is the major nonpsychoactive constituent of plant
“Loss of inhibitory synaptic transmission within the dorsal horn of the spinal cord plays a key role in the development of chronic pain following inflammation or nerve injury. Inhibitory postsynaptic transmission in the adult spinal cord involves mainly glycine.
Cannabidiol is a nonpsychotropic plant constituent of Cannabis sativa.
As we hypothesized that non-CB receptor mechanisms of cannabidiol might contribute to its anti-inflammatory and neuroprotective effects, we investigated the interaction of cannabidiol with strychnine-sensitive alpha(1 )and alpha(1)beta glycine receptors by using the whole-cell patch clamp technique.
Cannabidiol showed a positive allosteric modulating effect in a low micromolar concentration range (EC(50) values: alpha(1) = 12.3 +/- 3.8 micromol/l and alpha(1)beta = 18.1 +/- 6.2 micromol/l). Direct activation of glycine receptors was observed at higher concentrations above 100 micromol/l (EC(50) values: alpha(1) = 132.4 +/- 12.3 micromol/l and alpha(1)beta = 144.3 +/- 22.7 micromol/l).
These in vitro results suggest that strychnine-sensitive glycine receptors may be a target for cannabidiol mediating some of its anti-inflammatory and neuroprotective properties.”
