The Anti-Inflammatory Properties of Terpenoids from Cannabis.

View details for Cannabis and Cannabinoid Research cover image

“Cannabinoids are well known to have anti-inflammatory effects in mammalians; however, the Cannabis plant also contains other compounds such as terpenoids, whose biological effects have not yet been characterized. The aim of this study was to compare the anti-inflammatory properties of terpenoids with those of cannabidiol (CBD).

Materials and Methods: Essential oils prepared from three monoecious nonpsychoactive chemotypes of Cannabis were analyzed for their terpenoid content and subsequently studied pharmacologically for their anti-inflammatory properties in vitro and in vivo.

Results: In vitro, the three essential oils rich in terpenoids partly inhibited reactive oxygen intermediate and nitric oxide radical (NO) production in RAW 264.7 stimulated macrophages. The three terpenoid-rich oils exerted moderate anti-inflammatory activities in an in vivo anti-inflammatory model without affecting tumor necrosis factor alpha (TNFα) serum levels.

Conclusions: The different Cannabis chemotypes showed distinct compositions of terpenoids. The terpenoid-rich essential oils exert anti-inflammatory and antinociceptive activities in vitro and in vivo, which vary according to their composition. Their effects seem to act independent of TNFα. None of the essential oils was as effective as purified CBD. In contrast to CBD that exerts prolonged immunosuppression and might be used in chronic inflammation, the terpenoids showed only a transient immunosuppression and might thus be used to relieve acute inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/30596146

https://www.liebertpub.com/doi/10.1089/can.2018.0014

Accumulation of bioactive metabolites in cultivated medical Cannabis.

Image result for plos one “There has been an increased use of medical Cannabis in the United States of America as more states legalize its use. Complete chemical analyses of this material can vary considerably between producers and is often not fully provided to consumers. As phytochemists in a state with legal medical Cannabis we sought to characterize the accumulation of phytochemicals in material grown by licensed commercial producers. We report the development of a simple extraction and analysis method, amenable to use by commercial laboratories for the detection and quantification of both cannabinoids and terpenoids. Through analysis of developing flowers on plants, we can identify sources of variability of floral metabolites due to flower maturity and position on the plant. The terpenoid composition varied by accession and was used to cluster cannabis strains into specific types. Inclusion of terpenoids with cannabinoids in the analysis of medical cannabis should be encouraged, as both of these classes of compounds could play a role in the beneficial medical effects of different cannabis strains.”
]]>