“Corneal injury can result in dysfunction of corneal nociceptive signaling and corneal sensitization. Activation of the endocannabinoid system has been reported to be analgesic and anti-inflammatory. The purpose of this research was to investigate the antinociceptive and anti-inflammatory effects of cannabinoids with reported actions at cannabinoid 1 (CB1R) and cannabinoid 2 (CB2R) receptors and/or noncannabinoid receptors in an experimental model of corneal hyperalgesia. Topical cannabinoids reduce corneal hyperalgesia and inflammation. The antinociceptive and anti-inflammatory effects of Δ8THC are mediated primarily via CB1R, whereas that of the cannabinoids CBD and HU-308, involve activation of 5-HT1A receptors and CB2Rs, respectively. Cannabinoids could be a novel clinical therapy for corneal pain and inflammation resulting from ocular surface injury.” https://www.ncbi.nlm.nih.gov/pubmed/29450258 http://online.liebertpub.com/doi/abs/10.1089/can.2017.0041]]>
Tag Archives: THC
The Use of Cannabis and Cannabinoids in Treating Symptoms of Multiple Sclerosis: a Systematic Review of Reviews.
“Pharmaceutical cannabinoids such as nabiximols, nabilone and dronabinol, and plant-based cannabinoids have been investigated for their therapeutic potential in treating multiple sclerosis (MS) symptoms.
This review of reviews aimed to synthesise findings from high quality systematic reviews that examined the safety and effectiveness of cannabinoids in multiple sclerosis. We examined the outcomes of disability and disability progression, pain, spasticity, bladder function, tremor/ataxia, quality of life and adverse effects.
We identified 11 eligible systematic reviews providing data from 32 studies, including 10 moderate to high quality RCTs. Five reviews concluded that there was sufficient evidence that cannabinoids may be effective for symptoms of pain and/or spasticity in MS. Few reviews reported conclusions for other symptoms. Recent high quality reviews find cannabinoids may have modest effects in MS for pain or spasticity. Future research should include studies with non-cannabinoid comparators; this is an important gap in the evidence.” https://www.ncbi.nlm.nih.gov/pubmed/29442178 https://link.springer.com/article/10.1007%2Fs11910-018-0814-x]]>Cannabinoid-induced cell death in endometrial cancer cells: involvement of TRPV1 receptors in apoptosis.
“Among a variety of phytocannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most promising therapeutic compounds. Besides the well-known palliative effects in cancer patients, cannabinoids have been shown to inhibit in vitro growth of tumor cells.
Likewise, the major endocannabinoids (eCBs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG), induce tumor cell death.
The purpose of the present study was to characterize cannabinoid elements and evaluate the effect of cannabinoids in endometrial cancer cell viability.
These data indicate that cannabinoids modulate endometrial cancer cell death.
Selective targeting of TPRV1 by AEA, CBD, or other stable analogues may be an attractive research area for the treatment of estrogen-dependent endometrial carcinoma.
Our data further support the evaluation of CBD and CBD-rich extracts for the potential treatment of endometrial cancer, particularly, that has become non-responsive to common therapies.”
https://www.ncbi.nlm.nih.gov/pubmed/29441458
https://link.springer.com/article/10.1007%2Fs13105-018-0611-7
The Association of Unfavorable Traffic Events and Cannabis Usage: A Meta-Analysis
“In the last years were published many epidemiological articles aiming to link driving under the influence of cannabis (DUIC) with the risk of various unfavorable traffic events (UTEs), with sometimes contradictory results.
The primary objective of this study was to analyze whether there is a significant association between DUIC and UTEs.
Our analysis suggests that the overall effect size for DUIC on UTEs is not statistically significant, but there are significant differences obtained through subgroup analysis. This result might be caused by either methodological flaws (which are often encountered in articles on this topic), the indiscriminate employment of the term “cannabis use,” or an actual absence of an adverse effect. A positive test for cannabis (i.e., blood) does not necessarily imply that drivers were impaired, as THC/metabolites might be detected in blood a long time after impairment, especially in chronic cannabis users, which could also induce an important bias in the analysis of the results. When a driver is found, in traffic, with a positive reaction suggesting cannabis use, the result should be corroborated by either objective data regarding marijuana usage (like blood analyses, with clear cut-off values), or a clinical assessment of the impairment, before establishing his/her fitness to drive.” https://www.frontiersin.org/articles/10.3389/fphar.2018.00099/full]]>Acute ethanol inhibition of adult hippocampal neurogenesis involves CB1 cannabinoid receptor signaling.
“Chronic ethanol exposure has been found to inhibit adult hippocampal neurogenesis in multiple models of alcohol addiction. Together, these findings suggest that acute CB1R cannabinoid receptor activation and binge ethanol treatment reduce neurogenesis through mechanisms involving CB1R. ” https://www.ncbi.nlm.nih.gov/pubmed/29417597 http://onlinelibrary.wiley.com/doi/10.1111/acer.13608/abstract “Alcohol-induced neurodegeneration” http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A666727&dswid=174
“Defective Adult Neurogenesis in CB1 Cannabinoid Receptor Knockout Mice. Pharmacological studies suggest a role for CB1 cannabinoid receptors (CB1R) in regulating neurogenesis in the adult brain.” http://molpharm.aspetjournals.org/content/66/2/204.full
“Activation of Type 1 Cannabinoid Receptor (CB1R) Promotes Neurogenesis in Murine Subventricular Zone Cell Cultures” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660454/
“Several studies and patents suggest that the endocannabinoid system has neuro-protective properties and might be a target in neurodegenerative diseases” https://www.ncbi.nlm.nih.gov/pubmed/27364363 “The endocannabinoid system and neurogenesis in health and disease.” https://www.ncbi.nlm.nih.gov/pubmed/17404371“The role of cannabinoids in adult neurogenesis. Pharmacological targeting of the cannabinoid system as a regulator of neurogenesis may prove a fruitful strategy in the prevention or treatment of mood or memory disorders.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4543605/
“Regulation of Adult Neurogenesis by Cannabinoids” https://www.researchgate.net/publication/264424221_Regulation_of_Adult_Neurogenesis_by_Cannabinoids
“Delta-9-Tetrahydrocannabinol (∆9-THC) Induce Neurogenesis and Improve Cognitive Performances of Male Sprague Dawley Rats. Administration of ∆9-THC was observed to enhance the neurogenesis in the brain, especially in hippocampus thus improved the cognitive function of rats.” https://www.ncbi.nlm.nih.gov/pubmed/28933048
“Cannabidiol Reduces Aβ-Induced Neuroinflammation and Promotes Hippocampal Neurogenesis through PPARγ Involvement. CBD was observed to stimulate hippocampal neurogenesis.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230631/
“Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. Chronic administration of the major drugs of abuse including opiates, alcohol, nicotine, and cocaine has been reported to suppress hippocampal neurogenesis in adult rats. Plant-derived, or synthetic cannabinoids may promote hippocampal neurogenesis. Cannabinoids appear to be the only illicit drug whose capacity to produce increased hippocampal newborn neurons is positively correlated with its anxiolytic- and antidepressant-like effects. In summary, since adult hippocampal neurogenesis is suppressed following chronic administration of opiates, alcohol, nicotine, and cocaine, the present study suggests that cannabinoids are the only illicit drug that can promote adult hippocampal neurogenesis following chronic administration.” https://www.jci.org/articles/view/25509
]]>
Detection of delta-9-tetrahydrocannabinol (THC) in oral fluid, blood and urine following oral consumption of low-content THC hemp oil.
“Hemp-derivative (Cannabis sativa L.) food products containing trace levels of Δ-9-tetrahydrocannabinol (THC) are proposed for consumption in Australia and New Zealand; however, it is unclear whether use of these products will negatively affect existing drug screening protocols.
Consumption of low-content THC oil does not result in positive biological assessments.
It is therefore highly unlikely that ingestion of products containing these levels of THC will negatively impact existing region-specific drug driving enforcement protocols.”
https://www.ncbi.nlm.nih.gov/pubmed/29408718
https://www.sciencedirect.com/science/article/pii/S0379073817305492?via%3Dihub
