“Twenty-eight states in the U.S have legalized medical marijuana, yet its impacts on severe health consequences such as hospitalizations remain unknown. Meanwhile, the prevalence of opioid pain reliever (OPR) use and outcomes has increased dramatically. Recent studies suggested unintended impacts of legalizing medical marijuana on OPR, but the evidence is still limited. This study examined the associations between state medical marijuana policies and hospitalizations related to marijuana and OPR.
Tag Archives: Cannabinoids
Does Cannabidiol Protect Against Adverse Psychological Effects of THC?
“Tetrahydrocannabinol (THC) is the main psychoactive substance in cannabis. Cannabidiol (CBD) is a cannabinoid that appears in cannabis resin but rarely in herbal cannabis. In recent years, many positive attributes have been ascribed to CBD. Is cannabis that contains CBD less harmful than cannabis without CBD? Are people who smoke cannabis resin, therefore, less susceptible to psychosis or less likely to become addicted than are people who smoke herbal marijuana? Delta-9-tetrahydrocannabinol (THC) is the main psychoactive constituent of cannabis, and most, if not all, of the effects associated with the use of cannabis are caused by THC. Recent studies have suggested a possible protective effect of another cannabinoid, cannabidiol (CBD). Most recreational users will never be faced with persistent mental illness, but in some individuals cannabis use leads to undesirable effects: cognitive impairment, anxiety, paranoia, and increased risks of developing chronic psychosis or drug addiction. Studies examining the protective effects of CBD have shown that CBD can counteract the negative effects of THC. Few or no adverse effects of CBD have been proffered, and where CBD has been found to have an effect, it is usually in a “positive” (i.e., salubrious) direction. The evidence favoring a beneficial effect of CBD therefore merits further investigation in studies in which the amounts and ratios of CBD and THC correspond to the daily practices of recreational cannabis use.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3797438/ “Studies examining the protective effects of CBD have shown that CBD can counteract the negative effects of THC.” https://www.ncbi.nlm.nih.gov/pubmed/24137134 “CBD may also potentiate some of Δ9-THC’s beneficial effects as it reduces Δ9-THC’s psychoactivity to enhance its tolerability and widen its therapeutic window.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707667/]]>
Cannabinoid signaling in health and disease.
“Cannabis sativa has long been used for medicinal purposes.
To improve safety and efficacy, compounds from C. sativa were purified or synthesized and named under an umbrella group as cannabinoids.
Currently, several cannabinoids may be prescribed in Canada for a variety of indications such as nausea and pain.
More recently, an increasing number of reports suggest other salutary effects associated with endogenous cannabinoid signaling including cardioprotection.
The therapeutic potential of cannabinoids is therefore extended; however, evidence is limited and mechanisms remain unclear.
In addition, the use of cannabinoids clinically has been hindered due to pronounced psychoactive side effects.
This review provides an overview on the endocannabinoid system, including known physiological roles, and conditions in which cannabinoid receptor signaling has been implicated.”
Cell-Autonomous Excitation of Midbrain Dopamine Neurons by Endocannabinoid-Dependent Lipid Signaling.
“The major endocannabinoid in the mammalian brain is the bioactive lipid 2-arachidonoylglycerol (2-AG). The best-known effects of 2-AG are mediated by G-protein-coupled cannabinoid receptors. In principle, 2-AG could modify neuronal excitability by acting directly on ion channels, but such mechanisms are poorly understood. Using a preparation of dissociated mouse midbrain dopamine neurons to isolate effects on intrinsic excitability, we found that 100 nM 2-AG accelerated pacemaking and steepened the frequency-current relationship for burst-like firing. In voltage-clamp experiments, 2-AG reduced A-type potassium current (IA) through a cannabinoid receptor-independent mechanism mimicked by arachidonic acid, which has no activity on cannabinoid receptors. Activation of orexin, neurotensin, and metabotropic glutamate Gq/11-linked receptors mimicked the effects of exogenous 2-AG and their actions were prevented by inhibiting the 2-AG-synthesizing enzyme diacylglycerol lipase α. The results show that 2-AG and related lipid signaling molecules can directly tune neuronal excitability in a cell-autonomous manner by modulating IA.” https://www.ncbi.nlm.nih.gov/pubmed/28262417]]>
Inflammatory Regulation by Driving Microglial M2 Polarization: Neuroprotective Effects of Cannabinoid Receptor-2 Activation in Intracerebral Hemorrhage.
“The cannabinoid receptor-2 (CB2R) was initially thought to be the “peripheral cannabinoid receptor.” Recent studies, however, have documented CB2R expression in the brain in both glial and neuronal cells, and increasing evidence suggests an important role for CB2R in the central nervous system inflammatory response.
Intracerebral hemorrhage (ICH), which occurs when a diseased cerebral vessel ruptures, accounts for 10-15% of all strokes. Although surgical techniques have significantly advanced in the past two decades, ICH continues to have a high mortality rate.
The aim of this study was to investigate the therapeutic effects of CB2R stimulation in acute phase after experimental ICH in rats and its related mechanisms.
These findings demonstrated that CB2R stimulation significantly protected the brain damage and suppressed neuroinflammation by promoting the acquisition of microglial M2 phenotype in acute stage after ICH.
Taken together, this study provided mechanism insight into neuroprotective effects by CB2R stimulation after ICH.”
“The endogenous
“The noradrenergic system has been shown to play a key role in the regulation of stress responses, arousal, mood, and emotional states. Corticotropin-releasing factor (CRF) is a primary mediator of stress-induced activation of noradrenergic neurons in the nucleus locus coeruleus (LC).
The endocannabinoid (eCB) system also plays a key role in modulating stress responses, acting as an “anti-stress” neuro-mediator.
In the present study, we investigated the cellular sites for interactions between the