“Parkinson’s disease is a neurodegenerative disorder, the motor symptoms of which are associated classically with Lewy body formation and nigrostriatal degeneration.
Neuroinflammation has been implicated in the progression of this disease, by which microglia become chronically activated in response to α-synuclein pathology and dying neurons, thereby acquiring dishomeostatic phenotypes that are cytotoxic and can cause further neuronal death.
Microglia have a functional endocannabinoid signaling system, expressing the cannabinoid receptors in addition to being capable of synthesizing and degrading endocannabinoids. Alterations in the cannabinoid system-particularly an upregulation in the immunomodulatory CB2 receptor-have been demonstrated to be related to the microglial activation state and hence the microglial phenotype.
This paper will review studies that examine the relationship between the cannabinoid system and microglial activation, and how this association could be manipulated for therapeutic benefit in Parkinson’s disease.”
https://www.ncbi.nlm.nih.gov/pubmed/31973235
“Microglia activation states and cannabinoid system: Therapeutic implications. There is accumulating evidence indicating that cannabinoids (CBs) might serve as a promising tool to modify the outcome of inflammation, especially by influencing microglial activity. Microglia has a functional endocannabinoid (eCB) signaling system, composed of cannabinoid receptors and the complete machinery for the synthesis and degradation of eCBs. These actions make CBs a promising therapeutic tool to avoid the detrimental effects of inflammation and possibly paving the way to target microglia in order to generate a reparative milieu in neurodegenerative diseases.” https://www.ncbi.nlm.nih.gov/pubmed/27373505
“These findings imply that a hypofunction or a dysregulation of the endocannabinoid system may be responsible for some of the symptoms of these diseases. Scientific evidence shows that cannabis can provide symptomatic relief in several neurodegenerative diseases.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070159/
“Cannabinoids can have neuroprotective effects, and this can be exploited for therapeutic strategies against neurodegenerative diseases” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243800/


“Parkinson’s disease (PD) is a neurodegenerative disorder classically associated with motor symptoms, but several nonmotor disturbances appear decades before the clinical diagnosis of the disease.
“Memantine and marijuana smoking have been previously found to inhibit tremor in parkinsonian patients, however, the observed effects were relatively weak. The tremorolytic efficacy of memantine and
“L-dopa induced dyskinesia (LID) is a debilitating side-effect of the primary treatment used in Parkinson’s disease (PD), l-dopa. Here we investigate the effect of HU-308, a
“Parkinson’s disease (PD) and L-DOPA-induced dyskinesia (LID) are motor disorders with significant impact on the patient’s quality of life. Unfortunately, pharmacological treatments that improve these disorders without causing severe side effects are not yet available. Delay in initiating L-DOPA is no longer recommended as LID development is a function of disease duration rather than cumulative L-DOPA exposure.
“Cannabis sativa (cannabis) is one of the oldest plants cultivated by men. Cannabidiol (CBD) is the major non-psychomimetic compound derived from cannabis. It has been proposed to have a therapeutic potential over a wide range of neuropsychiatric disorders.
“Parkinson’s disease (PD) is a neurodegenerative disease and its characteristic is the progressive degeneration of dopaminergic neurons within the substantia nigra (SN) of the midbrain. There is hardly any clinically proven efficient therapeutics for its cure in several recent preclinical advances proposed to treat PD.