
“Neuroblastoma (NBL) is one of the most common childhood cancers that originate from the immature nerve cells of the sympathetic system. Studies with NBL cancers have also shown that miRNAs are dysregulated and may play a critical role in pathogenesis.
Cannabidiol (CBD) is a non-psychoactive compound found in marijuana which has been previously shown by our laboratory and others to induce apoptosis in cancer cells. However, there are no studies reported to test if CBD mediates these effects through regulation of miRNA.
In the current study, therefore, we investigated if CBD induces apoptosis in human NBL cell lines, SH SY5Y and IMR-32, and if it is regulated by miRNA.
Our data demonstrated that CBD induces apoptosis in NBL cells through activation of serotonin and vanilloid receptors. We also found that caspase-2 and -3 played an important role in the induction of apoptosis. CBD also significantly reduced NBL cell migration and invasion in vitro.
Furthermore, CBD blocked mitochondrial respiration and caused a shift in metabolism towards glycolysis. CBD altered the expression of miRNA specifically, down-regulating hsa-let-7a and upregulating hsa-mir-1972. Downregulation of let-7a increased expression of target caspase-3, and growth arrest specific-7 (GAS-7) genes. Upregulation of hsa-mir-1972 caused decreased expression of BCL2L1 and SIRT2 genes.
Together, our studies suggest that CBD-mediated apoptosis in NBL cells is regulated by miRNA.”


“In the last decades, a lot of attention has been paid to the compounds present in medicinal Cannabis sativa L., such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), and their effects on inflammation and cancer-related pain.
“Osteosarcoma is the most common primary malignant tumor of bone in children and adolescents.
Bortezomib (BTZ) is an approved anticancer drug, classified as a selective reversible inhibitor of the ubiquitin-dependent proteasome system, that leads to cancer cell cycle arrest and apoptosis reducing the invasion ability of Osteosarcoma cells in vitro. It also regulates the RANK/RANKL/OPG system, involved in the pathogenesis of bone tumors and in cell migration.
A side effect of BTZ is to induce painful sensory peripheral neuropathy which lead to cessation of therapy or dose reduction.
Recently BTZ has been evaluated in combination with
“Glioblastoma multiforme (GBM) is the most frequent and aggressive form of brain cancer. These features are explained at least in part by the high resistance exhibited by these tumors to current anticancer therapies. Thus, the development of novel therapeutic approaches is urgently needed to improve the survival of the patients suffering this devastating disease.
Δ9-Tetrahydrocannabinol (THC, the major active ingredient of marijuana), and other cannabinoids have been shown to exert antitumoral actions in animal models of cancer, including glioma. The mechanism of these anticancer actions relies, at least in part, on the ability of these compounds to stimulate autophagy-mediated apoptosis in tumor cells.
Previous observations from our group demonstrated that local administration of THC (or of THC + CBD at a 1:1 ratio, a mixture that resembles the composition of the cannabinoid-based medicine Sativex®) in combination with Temozolomide, the benchmark agent for the treatment of GBM, synergistically reduces the growth of glioma xenografts.
With the aim of optimizing the possible clinical utilization of cannabinoids in anti-GBM therapies, in this work we explored the anticancer efficacy of the systemic administration of cannabinoids in combination with TMZ in preclinical models of glioma.
Our results show that oral administration of THC+CBD (Sativex-like extracts) in combination with TMZ produces a strong antitumoral effect in both subcutaneous and intracranial glioma cell-derived tumor xenografts. In contrast, combined administration of Sativex-like and BCNU (another alkylating agent used for the treatment of GBM which share structural similarities with the TMZ) did not show a stronger effect than individual treatments.
Altogether, our findings support the notion that the combined administration of TMZ and oral cannabinoids could be therapeutically exploited for the management of GBM.”
“Studies have emphasized an antineoplastic effect of the non-psychoactive, phyto-cannabinoid,
“Several studies demonstrated that