Two Janus cannabinoids that are both CB2 agonists and CB1 antagonists.

Image result for J Pharmacol Exp Ther

“The cannabinoid signaling system includes two G protein coupled receptors, CB1 and CB2. These receptors are widely distributed throughout the body and have each been implicated in many physiologically important processes.

Though the cannabinoid signaling system has therapeutic potential, a persistent hurdle has remained the development of receptor-selective ligands. Because CB1 and CB2 are involved in diverse processes, it would be advantageous develop ligands that differentially engaging CB1 and CB2.

In summary we have determined that GW405833 and AM1710 are not only CB2 agonists but also CB1 antagonists, with distinctive and complex signaling properties. Thus experiments using these compounds must take into account their potential activity at CB1 receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/27927913

Cannabinoid Type-2 Receptor Drives Neurogenesis and Improves Functional Outcome After Stroke.

Image result for stroke journal

“Stroke is a leading cause of adult disability characterized by physical, cognitive, and emotional disturbances. Unfortunately, pharmacological options are scarce.

The cannabinoid type-2 receptor (CB2R) is neuroprotective in acute experimental stroke by anti-inflammatory mechanisms.

CONCLUSIONS:

Our data support that CB2R is fundamental for driving neuroblast migration and suggest that an endocannabinoid tone is required for poststroke neurogenesis by promoting neuroblast migration toward the injured brain tissue, increasing the number of new cortical neurons and, conceivably, enhancing motor functional recovery after stroke.”

https://www.ncbi.nlm.nih.gov/pubmed/27899748

The cannabinoid beta-caryophyllene (BCP) induces neuritogenesis in PC12 cells by a cannabinoid-receptor-independent mechanism.

Image result for chemico-biological interactions

“Beta-caryophyllene (BCP) is a phytocannabinoid whose neuroprotective activity has been mainly associated with selective activation of cannabinoid-type-2 (CB2) receptors, inhibition of microglial activation and decrease of inflammation.

Here, we addressed the potential of BCP to induce neuritogenesis in PC12 cells, a model system for primary neuronal cells that express trkA receptors, respond to NGF and do not express CB2 receptors.

We demonstrated that BCP increases the survival and activates the NGF-specific receptor trkA in NGF-deprived PC12 cells, without increasing the expression of NGF itself. The neuritogenic effect of BCP in PC12 cells was abolished by k252a, an inhibitor of the NGF-specific receptor trkA. Accordingly, BCP did not induce neuritogenesis in SH-SY5Y neuroblastoma cells, a neuronal model that does not express trkA receptors and do not respond to NGF.

Additionally, we demonstrated that BCP increases the expression of axonal-plasticity-associated proteins (GAP-43, synapsin and synaptophysin) in PC12 cells. It is known that these proteins are up-regulated by NGF in neurons and neuron-like cells, such as PC12 cells.

Altogether, these findings suggest that BCP activates trka receptors and induces neuritogenesis by a mechanism independent of NGF or cannabinoid receptors. This is the first study to show such effects of BCP and their beneficial role in neurodegenerative processes should be further investigated.”

https://www.ncbi.nlm.nih.gov/pubmed/27871898

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

“The oral intake of this dietary cannabinoid with vegetable food could be advantageous in the daily routine clinical practice over synthetic cannabinoid agonists.” http://www.europeanneuropsychopharmacology.com/article/S0924-977X(13)00302-7/fulltext

Cannabinoid Receptor 2 Functional Variant Contributes to the Risk for Pediatric Inflammatory Bowel Disease.

Image result for J Clin Gastroenterol

“We conducted a case-control association analysis to establish the role of a common CB2 functional variant, Q63R, in the susceptibility to inflammatory bowel disease (IBD).

Endocannabinoids may limit intestinal inflammation through cannabinoid receptor 1 and/or 2 (CB1, CB2).

The CB2-Q63R variant contributes to the risk for pediatric IBD, in particular CD. The R63 variant is associated with a more severe phenotype in both UC and CD.

Taken together, our data point toward the involvement of the CB2 receptor in the pathogenesis and clinical features of pediatric IBD.”

https://www.ncbi.nlm.nih.gov/pubmed/27875353

A Science Based Evaluation of Cannabis and Cancer

Image result for thebmj

“The irritant properties of all smoke will naturally tend to promote a pro-inflammatory immune response with the corresponding production of potentially carcinogenic free radicals. However, cannabis promotes immune deviation to an anti-inflammatory Th2 response via immune-system specific CB2 receptors. Thus, the natural pharmacological properties of marijuana’s cannabinoids, that are not present in tobacco smoke, would minimize potential irritant initiated carcinogenesis. In contrast, the pharmacological activities of tobacco smoke would tend to amplify its carcinogenic potential by inhibiting the death of genetically damaged cells. Together these observations support the epidemiological study of the Kaiser Foundation that did not find cannabis smoking to be associated with cancer incidence. Additionally, the demonstrated cancer killing activities of cannabinoids has been ignored. Cannabinoids have been shown to kill some leukemia and lymphoma, breast and prostate, pheochromocytoma, glioma and skin cancer cells in cell culture and in animals.” http://www.bmj.com/rapid-response/2011/10/29/science-based-evaluation-cannabis-and-cancer

The central cannabinoid receptor type-2 (CB2) and chronic pain.

Image result for international journal of neuroscience

“Cannabinoid receptor type-2 (CB2, CB2 Receptor, or CB2-R) mediates analgesia, via two mechanisms. CB2 receptors contained in peripheral immune tissue mediates analgesia by altering cytokine profiles, and thus has little adverse effects on central nervous systems. CB2 is also expressed in the neurons and glial cells of the Central Nervous System (CNS). This neuronal expression may also contribute to pain attenuation. The CB2 receptor has been proposed as a potential target in treating chronic pain of several etiologies.”

https://www.ncbi.nlm.nih.gov/pubmed/27842450

The combination of β-caryophyllene, baicalin and catechin synergistically suppresses the proliferation and promotes the death of RAW267.4 macrophages in vitro.

Image result for International Journal of Molecular Medicine

“β-caryophyllene, which is a constituent of many essential oils, has been known to be a selective agonist of the cannabinoid receptor type-2 and to exert cannabimimetic anti-inflammatory effects in animals.

On the whole, this study demonstrates that the combination of β-caryophyllene, baicalin and (+)-catechin exerts synergistic suppressive effects on macrophages in vitro.

This composition may be a useful as an anti-inflammatory treatment strategy.”

https://www.ncbi.nlm.nih.gov/pubmed/27840942

Cannabinoid derivatives exert a potent anti-myeloma activity both in vitro and in vivo.

Image result for Int J Cancer.

“Although hematopoietic and immune system show high levels of the cannabinoid receptor CB2, the potential effect of cannabinoids on hematologic malignancies has been poorly determined.

Here we have investigated their anti-tumor effect in multiple myeloma (MM).

We demonstrate that cannabinoids induce a selective apoptosis in MM cell lines and in primary plasma cells of MM patients, while sparing normal cells from healthy donors, including hematopoietic stem cells.

Remarkably, blockage of the CB2 receptor also inhibited cannabinoid-induced apoptosis.

Cannabinoid derivative WIN-55 enhanced the anti-myeloma activity of dexamethasone and melphalan overcoming resistance to melphalan in vitro. Finally, administration of cannabinoid WIN-55 to plasmacytoma-bearing mice significantly suppressed tumor growth in vivo.

Together, our data suggest that cannabinoids may be considered as potential therapeutic agents in the treatment of MM.”

https://www.ncbi.nlm.nih.gov/pubmed/27778331

http://www.thctotalhealthcare.com/category/multiple-myeloma/

Cannabinoid Receptor 2 Activation Restricts Fibrosis and Alleviates Hydrocephalus after Intraventricular Hemorrhage.

Image result for brain research journal

“Fibrosis in ventricular system has a role in hydrocephalus following intraventricular hemorrhage (IVH).

The cannabinoid receptor 2 (CB2) has been reported to participate in alleviating the fibrosis process of many diseases.

However, its role in fibrosis after IVH was unclear so far, and we hypothesized that CB2 activation has potential to attenuate hydrocephalus after IVH via restricting fibrosis. So the present study was designed to investigate this hypothesis in a modified rat IVH model.

In conclusion, CB2 may have anti-fibrogenic effects after IVH. CB2 agonist suppressed fibrosis of ventricular system and alleviated hydrocephalus following IVH, which is partly mediated by inhibiting TGF-β1.”

https://www.ncbi.nlm.nih.gov/pubmed/27769788

Targeting cannabinoid receptor-2 pathway by phenylacetylamide suppresses the proliferation of human myeloma cells through mitotic dysregulation and cytoskeleton disruption.

Image result for molecular carcinogenesis journal

“Cannabinoid receptor-2 (CB2) is expressed dominantly in the immune system, especially on plasma cells.

Cannabinergic ligands with CB2 selectivity emerge as a class of promising agents to treat CB2-expressing malignancies without psychotropic concerns.

In this study, we found that CB2 but not CB1 was highly expressed in human multiple myeloma (MM) and primary CD138+ cells.

Thus, targeting CB2 may represent an attractive approach to treat cancers of immune origin.”

https://www.ncbi.nlm.nih.gov/pubmed/25640641