Medical marijuana as protection against the H1N1 swine flu virus?

“When the immune system attacks a flu virus, it causes widespread inflammation throughout the body. This inflammation presents itself in runny noses, soar throats, and body aches that accompany influenza. Runaway inflammation can cause the immune system to destroy the body it was meant to protect and lead to death.

 “When inflammation goes off the handle, the body releases endocannabinoids, which are natural chemicals that suppress the immune system, taking down the inflammation before it does more harm than good. This endocannabinoid system, as it’s called, is one of the many systems responsible for maintaining balance and health in the body,” ABC News reported.

If the endocannabinoid system cannot keep up – which often happens in very severe influenza infections – organ failure, particularly lung failure, may result.

 “They die not from the virus itself but from their own immune response,” Melamede told ABC News.
Cannabis Science intends to solve this threat. Marijuana contains natural, plant-based cannabinoids, called phytocannabinoids. A medical marijuana lozenge provides the body with a boost of endocannabinoids and helps to relieve the dangerous inflammation.
While viruses like the H1N1 swine flu bug are clever in their ability to mutate and outsmart even the latest vaccines, the human body’s response – with regard to inflammation management – does not change. Cannabis Science may be on to something here.”

http://digitaljournal.com/article/276928

Endocannabinoid pathways and their role in multiple sclerosis-related muscular dysfunction.

“Modulation of the endocannabinoid system has been shown to have therapeutic potential in a number of disease states.

Sativex(®) (nabiximols, USAN name) contains the two main phytocannabinoids from Cannabis sativa, tetrahydrocannabinol and cannabidiol in a 1:1 ratio, and it acts as an endocannabinoid system modulator.

In an experimental mouse model of MS-related spasticity, Sativex dose-dependently improved hind limb flexion/stiffness and a dosage of 10 mg/kg was shown to be as effective as the most widely established anti-spasticity treatment baclofen (5 mg/kg).

These findings with Sativex are very promising and offer encouragement for MS patients, the majority of whom will develop spasticity-related disabling and recalcitrant symptoms. Furthermore, research into the endocannabinoid system may offer potential in other neurodegenerative, inflammatory and pain disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/21449854

The endocannabinoid system, cannabinoids, and pain.

“The endocannabinoid system is involved in a host of homeostatic and physiologic functions, including modulation of pain and inflammation… Exogenous plant-based cannabinoids (phytocannabinoids) and chemically related compounds, like the terpenes, commonly found in many foods, have been found to exert significant analgesic effects in various chronic pain conditions.

Currently, the use of Δ9-tetrahydrocannabinol is limited by its psychoactive effects and predominant delivery route (smoking), as well as regulatory or legal constraints.

 However, other phytocannabinoids in combination, especially cannabidiol and β-caryophyllene, delivered by the oral route appear to be promising candidates for the treatment of chronic pain due to their high safety and low adverse effects profiles.

This review will provide the reader with the foundational basic and clinical science linking the endocannabinoid system and the phytocannabinoids with their potentially therapeutic role in the management of chronic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/24228165

Evaluation of the potential of the phytocannabinoids, cannabidivarin (CBDV) and Δ9 -tetrahydrocannabivarin (THCV), to produce CB1 receptor inverse agonism symptoms of nausea in rats.

“The cannabinoid 1(CB1 ) receptor inverse agonists/antagonists, rimonabant (SR141716, SR) and AM251, produce nausea and potentiate toxin-induced nausea by inverse agonism (rather than antagonism) of the CB1 receptor. Here, we evaluated two phytocannabinoids, cannabidivarin (CBDV) and Δ9 -tetrahydrocannabivarin (THCV) for their ability to produce these behavioural effects characteristic of CB1 receptor inverse agonism in rats.

…we investigated the potential of THCV and CBDV to produce conditioned gaping (measure of nausea-induced behaviour),..

THC, THCV  and CBDV suppressed LiCl-induced conditioned gaping, suggesting anti-nausea potential…

The pattern of findings indicates that neither THCV nor CBDV produced a behavioural profile characteristic of CB1 receptor inverse agonists.

As well, these compounds may have therapeutic potential in reducing nausea.”

http://www.ncbi.nlm.nih.gov/pubmed/23902479

Epigenetic Control of Skin Differentiation Genes by Phytocannabinoids.

“A role for endocannabinoid signaling has been reported in the control of epidermal physiology, whereby anandamide is able to regulate the expression of skin differentiation genes through DNA methylation. Here, we have investigated the possible epigenetic regulation of these genes by selected phytocannabinoids, plant-derived cannabinoids holding potential as novel therapeutics for various human diseases.

CONCLUSIONS AND IMPLICATIONS:

These findings identify the phytocannabinoids cannabidiol and cannabigerol as transcriptional repressors that can control cell proliferation and differentiation, suggesting (especially for cannabidiol) a possible exploitation as lead compounds to be used in the development of novel therapeutics for skin diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/23869687

Phytocannabinoids

“Phytocannabinoids, also called ”natural cannabinoids”, ”herbal cannabinoids”, and ”classical cannabinoids”, are only known to occur naturally in significant quantity in the cannabis plant, and are concentrated in a viscous resin that is produced in glandular structures known as trichomes.

In addition to cannabinoids, the resin is rich in terpenes, which are largely responsible for the odour of the cannabis plant.

Phytocannabinoids are nearly insoluble in water but are soluble in lipids, alcohols, and other non-polar organic solvents. However, as phenols, they form more water-soluble phenolate salts under strongly alkaline conditions.

All-natural cannabinoids are derived from their respective 2-carboxylic acids (2-COOH) by decarboxylation (catalyzed by heat, light, or alkaline conditions).

Types

At least 66 cannabinoids have been isolated from the cannabis plant. To the right the main classes of natural cannabinoids are shown. All classes derive from cannabigerol-type compounds and differ mainly in the way this precursor is cyclized.

Tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) are the most prevalent natural cannabinoids and have received the most study. Other common cannabinoids are listed below:

  • CBG Cannabigerol
  • CBC Cannabichromene
  • CBL Cannabicyclol
  • CBV Cannabivarin
  • THCV Tetrahydrocannabivarin
  • CBDV Cannabidivarin
  • CBCV Cannabichromevarin
  • CBGV Cannabigerovarin
  • CBGM Cannabigerol Monoethyl Ether

Tetrahydrocannabinol

Tetrahydrocannabinol (THC) is the primary psychoactive component of the plant. It appears to ease moderate pain (analgetic) and to be neuroprotective. THC has approximately equal affinity for the CB1 and CB2 receptors. Its effects are perceived to be more cerebral.

”Delta”-9-Tetrahydrocannabinol (Δ9-THC, THC) and ”delta”-8-tetrahydrocannabinol (Δ8-THC), mimic the action of anandamide, a neurotransmitter produced naturally in the body. The THCs produce the ”high” associated with cannabis by binding to the CB1 cannabinoid receptors in the brain.

Cannabidiol

Cannabidiol (CBD) is not psychoactive, and was thought not to affect the psychoactivity of THC. However, recent evidence shows that smokers of cannabis with a higher CBD/THC ratio were less likely to experience schizophrenia-like symptoms.

This is supported by psychological tests, in which participants experience less intense psychotic effects when intravenous THC was co-administered with CBD (as measured with a PANSS test).

It has been hypothesized that CBD acts as an allosteric antagonist at the CB1 receptor and thus alters the psychoactive effects of THC.

It appears to relieve convulsion, inflammation, anxiety, and nausea. CBD has a greater affinity for the CB2 receptor than for the CB1 receptor.

Cannabigerol

Cannabigerol (CBG) is non-psychotomimetic but still affects the overall effects of Cannabis. It acts as an α2-adrenergic receptor agonist, 5-HT1A receptor antagonist, and CB1 receptor antagonist. It also binds to the CB2 receptor.

Tetrahydrocannabivarin

Tetrahydrocannabivarin (THCV) is prevalent in certain South African and Southeast Asian strains of Cannabis. It is an antagonist of THC at CB1 receptors and attenuates the psychoactive effects of THC.

Cannabichromene

Cannabichromene (CBC) is non-psychoactive and does not affect the psychoactivity of THC It is found in nearly all tissues in a wide range of animals.

Two analogs of anandamide, 7,10,13,16-docosatetraenoylethanolamide and ”homo”-γ-linolenoylethanolamine, have similar pharmacology.

All of these are members of a family of signalling lipids called ”N”-acylethanolamides, which also includes the noncannabimimetic palmitoylethanolamide and oleoylethanolamine, which possess anti-inflammatory and orexigenic effects, respectively. Many ”N”-acylethanolamines have also been identified in plant seeds and in molluscs.

  • 2-arachidonoyl glycerol (2-AG)

Another endocannabinoid, 2-arachidonoyl glycerol, binds to both the CB1 and CB2 receptors with similar affinity, acting as a full agonist at both, and there is some controversy over whether 2-AG rather than anandamide is chiefly responsible for endocannabinoid signalling ”in vivo”.

In particular, one ”in vitro” study suggests that 2-AG is capable of stimulating higher G-protein activation than anandamide, although the physiological implications of this finding are not yet known.

  • 2-arachidonyl glyceryl ether (noladin ether)

In 2001, a third, ether-type endocannabinoid, 2-arachidonyl glyceryl ether (noladin ether), was isolated from porcine brain.

Prior to this discovery, it had been synthesized as a stable analog of 2-AG; indeed, some controversy remains over its classification as an endocannabinoid, as another group failed to detect the substance at “any appreciable amount” in the brains of several different mammalian species.

It binds to the CB1 cannabinoid receptor (”K”i = 21.2 nmol/L) and causes sedation, hypothermia, intestinal immobility, and mild antinociception in mice. It binds primarily to the CB1 receptor, and only weakly to the CB2 receptor.

Like anandamide, NADA is also an agonist for the vanilloid receptor subtype 1 (TRPV1), a member of the vanilloid receptor family.

  • Virodhamine (OAE)

A fifth endocannabinoid, virodhamine, or ”O”-arachidonoyl-ethanolamine (OAE), was discovered in June 2002. Although it is a full agonist at CB2 and a partial agonist at CB1, it behaves as a CB1 antagonist ”in vivo”.

In rats, virodhamine was found to be present at comparable or slightly lower concentrations than anandamide in the brain, but 2- to 9-fold higher concentrations peripherally.

Function

Endocannabinoids serve as intercellular ‘lipid messengers’, signaling molecules that are released from one cell and activate the cannabinoid receptors present on other nearby cells.

Although in this intercellular signaling role they are similar to the well-known monoamine neurotransmitters, such as acetylcholine and dopamine, endocannabinoids differ in numerous ways from them. For instance, they use retrograde signaling.

Furthermore, endocannabinoids are lipophilic molecules that are not very soluble in water. They are not stored in vesicles, and exist as integral constituents of the membrane bilayers that make up cells. They are believed to be synthesized ‘on-demand’ rather than made and stored for later use.

The mechanisms and enzymes underlying the biosynthesis of endocannabinoids remain elusive and continue to be an area of active research.

The endocannabinoid 2-AG has been found in bovine and human maternal milk.

Retrograde signal

Conventional neurotransmitters are released from a ‘presynaptic’ cell and activate appropriate receptors on a ‘postsynaptic’ cell, where presynaptic and postsynaptic designate the sending and receiving sides of a synapse, respectively.

Endocannabinoids, on the other hand, are described as retrograde transmitters because they most commonly travel ‘backwards’ against the usual synaptic transmitter flow.

They are, in effect, released from the postsynaptic cell and act on the presynaptic cell, where the target receptors are densely concentrated on axonal terminals in the zones from which conventional neurotransmitters are released.

Activation of cannabinoid receptors temporarily reduces the amount of conventional neurotransmitter released.

This endocannabinoid mediated system permits the postsynaptic cell to control its own incoming synaptic traffic.

The ultimate effect on the endocannabinoid-releasing cell depends on the nature of the conventional transmitter being controlled.

For instance, when the release of the inhibitory transmitter GABA is reduced, the net effect is an increase in the excitability of the endocannabinoid-releasing cell.

On the converse, when release of the excitatory neurotransmitter glutamate is reduced, the net effect is a decrease in the excitability of the endocannabinoid-releasing cell.

Range

Endocannabinoids are hydrophobic molecules. They cannot travel unaided for long distances in the aqueous medium surrounding the cells from which they are released, and therefore act locally on nearby target cells. Hence, although emanating diffusely from their source cells, they have much more restricted spheres of influence than do hormones, which can affect cells throughout the body.

Other thoughts

Endocannabinoids constitute a versatile system for affecting neuronal network properties in the nervous system.

”Scientific American” published an article in December 2004, entitled “The Brain’s Own Marijuana” discussing the endogenous cannabinoid system.

The current understanding recognizes the role that endocannabinoids play in almost every major life function in the human body.

U.S. Patent # 6630507

In 2003 The U.S.A.’s Government as represented by the Department of Health and Human Services was awarded a patent on cannabinoids as antioxidants and neuroprotectants. U.S. Patent 6630507.”

http://www.news-medical.net/health/Phytocannabinoids.aspx

Cannabinoids – What are Cannabinoids?

“Cannabinoids are a group of terpenophenolic compounds present in Cannabis (”Cannabis sativa”) and occur naturally in the nervous and immune systems of animals.

The broader definition of cannabinoids refers to a group of substances that are structurally related to tetrahydrocannabinol (THC) or that bind to cannabinoid receptors.

The chemical definition encompasses a variety of distinct chemical classes: the classical cannabinoids structurally related to THC, the nonclassical cannabinoids, the aminoalkylindoles, the eicosanoids related to the endocannabinoids, 1, quinolines and arylsulphonamides, and additional compounds that do not fall into these standard classes but bind to cannabinoid receptors.

The term ”cannabinoids” also refers to a unique group of secondary metabolites found in the cannabis plant, which are responsible for the plant’s peculiar pharmacological effects.

At the present time, there are three general types of cannabinoids: ”phytocannabinoids” occur uniquely in the cannabis plant; ”endogenous cannabinoids” are produced in the bodies of humans and other animals; and ”synthetic cannabinoids” are similar compounds produced in a laboratory.”

http://www.news-medical.net/health/Cannabinoids-What-are-Cannabinoids.aspx

Medical Marijuana Inc Announces Positive Developments in Recent Studies Using Cannabidiol (CBD) Compound; NBC News, ABC News and Huffington Post Report California Pacific Medical Center’s Findings That CBD Stops Metastasis in Aggressive Cancers – The Wall Street Journal

“Medical Marijuana Inc Announces Positive Developments in Recent Studies Using Cannabidiol (CBD) Compound; NBC News, ABC News and Huffington Post Report California Pacific Medical Center’s Findings That CBD Stops Metastasis in Aggressive Cancers

SAN DIEGO, May 28, 2013 (GLOBE NEWSWIRE) — Medical Marijuana Inc (OTC Pink:MJNA) is pleased to inform shareholders and the general public of recent developments in the research involving Cannabidiol (CBD) and other Phyto-cannabinoids.

The Following is taken from a Huffington Post interview with Dr. McAllister and Dr. Desprez:

A pair of scientists at California Pacific Medical Center in San Francisco has found that a compound derived from marijuana could stop metastasis in many kinds of aggressive cancer, potentially altering the fatality of the disease forever.

“It took us about 20 years of research to figure this out, but we are very excited,” said Pierre Desprez, one of the scientists behind the discovery, to The Huffington Post. “We want to get started with trials as soon as possible.”

The Daily Beast first reported on the finding, which has already undergone both laboratory and animal testing, and is awaiting permission for clinical trials in humans.

Desprez, a molecular biologist, spent decades studying ID-1, the gene that causes cancer to spread. Meanwhile, fellow researcher Sean McAllister was studying the effects of Cannabidiol, or CBD, a non-toxic, non-psychoactive chemical compound found in the cannabis plant. Finally, the pair collaborated, combining CBD and cells containing high levels of ID-1 in a petri dish.

“What we found was that his Cannabidiol could essentially ‘turn off’ the ID-1,” Desprez told HuffPost. The cells stopped spreading and returned to normal.

“We likely would not have found this on our own,” he added. “That’s why collaboration is so essential to scientific discovery.”

Desprez and McAllister first published a paper about the finding in 2007. Since then, their team has found that CBD works both in the lab and in animals. And now, they’ve found even more good news.

“We started by researching breast cancer,” said Desprez. “But now we’ve found that Cannabidiol works with many kinds of aggressive cancers–brain, prostate–any kind in which these high levels of ID-1 are present.”

Desprez hopes that clinical trials will begin immediately.

“We’ve found no toxicity in the animals we’ve tested, and Cannabidiol is already used in humans for a variety of other ailments,” he said. Indeed, the compound is used to relieve anxiety and nausea, and, since it is non-psychoactive, does not cause the “high” associated with THC.

While marijuana advocates will surely praise the discovery, Desprez explained that it’s not so easy as just lighting up.

“We used injections in the animal testing and are also testing pills,” he said. “But you could never get enough Cannabidiol for it to be effective just from smoking.”

Additional Information:

Dr. McAllister & CBD Research

Dr. Sean McAllister says that he is ready to begin testing CBD on humans to evaluate anti-cancer properties. Dr. McAllister and colleague Pierre Desprez, PhD from California Pacific Medical Center have previously mentioned, “Cannabidiol offers hope of a non-toxic therapy that could treat aggressive forms of cancer without any of the painful side effects of chemotherapy.” “We found that this one compound, CBD, had a specific effect on metastatic cancer cells, very aggressive tumor cells. CBD in animal studies has been used to ‘switch off’ a specific gene regulator.” Dr. McAllister explains: “We find when you treat with CBD, you down regulate the expression of this protein and that inhibits the disease process.” Dr. McAllister and Dr. Desprez have developed a synthetic version of CBD, which they say targets a specific gene in the body related to the spread of cancer (metastasis). Article: http://abclocal.go.com/kgo/story?section=news/health&id=9057615

Additional Cannabidiol Information

ABC News-

http://abclocal.go.com/kgo/story?section=news/health&id=9057615

Huffington Post-

http://www.huffingtonpost.com/2012/09/19/marijuana-and-cancer_n_1898208. html?ncid=edlinkusaolp00000003&ir=Weird%20News

US. National Cancer Institute

http://www.cancer.gov/cancertopics/pdq/cam/cannabis/healthprofessional/p age4

Additional Dr. McAllister Publications

http://www.ncbi.nlm.nih.gov/pubmed/?term=Sean%20McAllister

Additional Published Material on Cannabidiol (CBD)

http://www.ncbi.nlm.nih.gov/gquery/?term=CANNABIDIOL”

More: http://online.wsj.com/article/PR-CO-20130528-906109.html

Physician’s documentation confirms successful treatment of basal cell carcinoma with topical cannabis extract

“We are pleased to announce that we have physician’s documentation that confirms the successful treatment of basal cell carcinoma that resulted from the application of a topical cannabis extract.” 

Currently, there is a tremendous amount of controversy with respect to the effects that cannabinoids have on cancers. Endocannabinoids, phytocannabinoids, and synthetic cannabinoids have demonstrated cancer killing and anti-metastatic properties in tissue culture and in animal models.

While formal, proper, FDA approved clinical trials that would prove or disprove the therapeutic potential of cannabis extracts for treating cancers; trials have not been carried out. Nevertheless, a significant number of anecdotal observations have accumulated that suggest people suffering from a variety of cancers appear to have been cured by ingesting what is known as “Rick Simpson’s hemp oil”.”

More: http://www.news-medical.net/news/20110407/Physicians-documentation-confirms-successful-treatment-of-basal-cell-carcinoma-with-topical-cannabis-extract.aspx

Cannabinoids.

“Since the discovery of an endogenous cannabinoid system, research into the pharmacology and therapeutic potential of cannabinoids has steadily increased. Two subtypes of G-protein coupled cannabinoid receptors, CB(1) and CB(1), have been cloned and several putative endogenous ligands (endocannabinoids) have been detected during the past 15 years. The main endocannabinoids are arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol (2-AG), derivatives of arachidonic acid, that are produced “on demand” by cleavage of membrane lipid precursors.

 Besides phytocannabinoids of the cannabis plant, modulators of the cannabinoid system comprise synthetic agonists and antagonists at the CB receptors and inhibitors of endocannabinoid degradation. Cannabinoid receptors are distributed in the central nervous system and many peripheral tissues, including immune system, reproductive and gastrointestinal tracts, sympathetic ganglia, endocrine glands, arteries, lung and heart. There is evidence for some non-receptor dependent mechanisms of cannabinoids and for endocannabinoid effects mediated by vanilloid receptors.

Properties of CB receptor agonists that are of therapeutic interest include analgesia, muscle relaxation, immunosuppression, anti-inflammation, antiallergic effects, improvement of mood, stimulation of appetite, antiemesis, lowering of intraocular pressure, bronchodilation, neuroprotection and antineoplastic effects. The current main focus of clinical research is their efficacy in chronic pain and neurological disorders. CB receptor antagonists are under investigation for medical use in obesity and nicotine addiction. Additional potential was proposed for the treatment of alcohol and heroine dependency, schizophrenia, conditions with lowered blood pressure, Parkinson’s disease and memory impairment in Alzheimer’s disease.”

http://www.ncbi.nlm.nih.gov/pubmed/16266285