Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy.

“Endocannabinoids are lipid-derived messengers, and both their synthesis and breakdown are under tight spatiotemporal regulation. As retrograde signalling molecules, endocannabinoids are synthesized postsynaptically but activate presynaptic cannabinoid receptor 1 (CB1) receptors to inhibit neurotransmitter release. In turn, CB1-expressing inhibitory and excitatory synapses act as strategically placed control points for activity-dependent regulation of dynamically changing normal and pathological oscillatory network activity. Here, we highlight emerging principles of cannabinoid circuit control and plasticity, and discuss their relevance for epilepsy and related comorbidities. New insights into cannabinoid signalling may facilitate the translation of the recent interest in cannabis-related substances as antiseizure medications to evidence-based treatment strategies.”

http://www.ncbi.nlm.nih.gov/pubmed/25891509

http://www.thctotalhealthcare.com/category/epilepsy-2/

Promising cannabinoid-based therapies for Parkinson’s disease: motor symptoms to neuroprotection.

“Parkinson’s disease (PD) is a slow insidious neurological disorder characterized by a loss of dopaminergic neurons in the midbrain. Although several recent preclinical advances have proposed to treat PD, there is hardly any clinically proved new therapeutic for its cure.

Increasing evidence suggests a prominent modulatory function of the cannabinoid signaling system in the basal ganglia. Hence, use of cannabinoids as a new therapeutic target has been recommended as a promising therapy for PD.

The elements of the endocannabinoid system are highly expressed in the neural circuit of basal ganglia wherein they bidirectionally interact with dopaminergic, glutamatergic, and GABAergic signaling systems.

As the cannabinoid signaling system undergoes a biphasic pattern of change during progression of PD, it explains the motor inhibition typically observed in patients with PD.

Cannabinoid agonists such as WIN-55,212-2 have been demonstrated experimentally as neuroprotective agents in PD, with respect to their ability to suppress excitotoxicity, glial activation, and oxidative injury that causes degeneration of dopaminergic neurons.

Additional benefits provided by cannabinoid related compounds including CE-178253, oleoylethanolamide, nabilone and HU-210 have been reported to possess efficacy against bradykinesia and levodopa-induced dyskinesia in PD.

Despite promising preclinical studies for PD, use of cannabinoids has not been studied extensively at the clinical level. In this review, we reassess the existing evidence suggesting involvement of the endocannabinoid system in the cause, symptomatology, and treatment of PD. We will try to identify future threads of research that will help in the understanding of the potential therapeutic benefits of the cannabinoid system for treating PD.”

http://www.ncbi.nlm.nih.gov/pubmed/25888232

“To conclude, development of safe, effective cannabis-based medicines targeting different mechanisms may have a significant impact in PD therapy.”

Full-text: http://www.molecularneurodegeneration.com/content/10/1/17

http://www.thctotalhealthcare.com/category/parkinsons-disease/

Pure cannabidiol in the treatment of malignant migrating partial seizures in infancy: a case report.

“Malignant migrating partial seizures in infancy is a devastating pharmacoresistent epileptic encephalopathy of unknown etiology characterized by onset in the first 6 months of life, continuous migrating focal seizures with corresponding multifocal electroencephalographic discharges, developmental deterioration, and early mortality.

Recent widespread interest in the nonpsychoactive component of the cannabis plant, cannabidiol, as a potential treatment for refractory devastating epilepsies has led to individual trials initiated by families or physicians in states that have legalized medical marijuana with anecdotal success.

We describe a now 10-month-old boy with malignant migrating partial seizures in infancy who made developmental gains and demonstrated sustained seizure reduction with the addition of cannabidiol to his antiepileptic regimen.

This report supports a role for cannabidiol in the treatment of malignant migrating partial seizures in infancy.”

http://www.ncbi.nlm.nih.gov/pubmed/25882081

http://www.thctotalhealthcare.com/category/epilepsy-2/

CB 1Cannabinoid Receptor Agonist Inhibits Matrix Metalloproteinase Activity in Spinal Cord Injury: A Possible Mechanism of Improved Recovery.

“Increased matrix metalloproteinase (MMP) activity contributes to glial scar formation that inhibits the repair path after spinal cord injury (SCI). We examined whether treatment with N-​(2-​chloroethyl)-​5Z,​8Z,​11Z,​14Z-​eicosatetraenamide (ACEA), a selective synthetic cannabinoid receptor (CB1R) agonist, inhibits MMP and improves functional and histological recovery in a mouse spinal cord compression injury model…

Collectively these data demonstrate that post-injury CB1R agonism can improve SCI outcome and also indicate marked attenuation of MMP-9 proteolytic enzyme activity as a biochemical mechanism.”

http://www.ncbi.nlm.nih.gov/pubmed/25881484

http://www.thctotalhealthcare.com/category/spinal-cord-injury/

The biology that underpins the therapeutic potential of cannabis-based medicines for the control of spasticity in multiple sclerosis.

“Cannabis-based medicines have recently been approved for the treatment of pain and spasticity in multiple sclerosis (MS).

This supports the original perceptions of people with MS, who were using illegal street cannabis for symptom control and pre-clinical testing in animal models of MS.

This activity is supported both by the biology of the disease and the biology of the cannabis plant and the endocannabinoid system.

MS results from disease that impairs neurotransmission and this is controlled by cannabinoid receptors and endogenous cannabinoid ligands. This can limit spasticity and may also influence the processes that drive the accumulation of progressive disability.”

http://www.ncbi.nlm.nih.gov/pubmed/25876933

http://www.thctotalhealthcare.com/category/multiple-sclerosis-ms/

The role of cannabinoids and leptin in neurological diseases.

“Cannabinoids exert a neuroprotective influence on some neurological diseases, including Alzheimer’s, Parkinson’s, Huntington’s, multiple sclerosis and epilepsy.

Synthetic cannabinoid receptor agonists/antagonists or compounds can provide symptom relief or control the progression of neurological diseases. However, the molecular mechanism and the effectiveness of these agents in controlling the progression of most of these diseases remain unclear.

Cannabinoids may exert effects via a number of mechanisms and interactions with neurotransmitters, neurotropic factors and neuropeptides.

Leptin is a peptide hormone involved in the regulation of food intake and energy balance via its actions on specific hypothalamic nuclei. Leptin receptors are widely expressed throughout the brain, especially in the hippocampus, basal ganglia, cortex and cerebellum. Leptin has also shown neuroprotective properties in a number of neurological disorders, such as Parkinson’s and Alzheimer’s.

Therefore, cannabinoid and leptin hold therapeutic potential for neurological diseases.

Further elucidation of the molecular mechanisms underlying the effects on these agents may lead to the development of new therapeutic strategies for the treatment of neurological disorders.”

Drug repurposing and emerging adjunctive treatments for schizophrenia.

“Schizophrenia is a frequent disorder, which substantially impairs patients’ quality of life. Moreover, the burden of illness for patients, their families and for the society, in general, is substantial.

Given the current failure of a number of mechanistically new drugs, repurposed compounds may serve as alternative and/or adjunctive agents for schizophrenic patients and for treatment refractory patients in particular. Anti-inflammatory drugs, as well as N-acetylcysteine, a precursor of the major antioxidant glutathione, hormones, glutamatergic and nicotinergic compounds, ‘nutraceuticals’ (e.g., ω-3 fatty acids) and cannabidiol, an endocannabinoid modulator, represent promising agents in this field.”

http://www.ncbi.nlm.nih.gov/pubmed/25866122

The multidrug transporter ABCG2 (BCRP) is inhibited by plant-derived cannabinoids.

“Multiple drug resistance (MDR) is one of the principal causes of chemotherapeutic treatment failure in malignant disease…

Cannabinoids are used therapeutically for the palliation of the adverse side effects associated with cancer chemotherapy. However, cannabinoids also inhibit both the activity and expression of the multidrug transporter…

Cannabinoids are novel Abcg2/ABCG2 inhibitors, reversing the Abcg2-mediated multidrug-resistant phenotype in vitro. This finding may have implications for the co-administration of cannabinoids with pharmaceuticals that are ABCG2 substrates…

Cannabis and cannabinoid preparations are used as therapeutic agents.

One of the many applications of cannabinoids is in the palliation of cancer chemotherapy-induced nausea, vomiting and anorexia. Indeed, the commercial preparations, Marinol and Cesamet, containing the synthetic Δ9-tetrahydrocannabinol (THC) analogue, dronabinol (or nabilone), are approved in some countries for this use.

Interestingly, in the future, cannabinoids might be co-administered with conventional cancer chemotherapies not only in a palliative capacity but also as primary anticancer medications. Accordingly, cannabinoids have demonstrated antiproliferative actions on cancer cells in vitro and in vivo…

To conclude, this is the first study to address the interaction of cannabinoids with the multidrug transporter ABCG2/Abcg2. The results presented here indicate that plant-derived cannabinoids are a novel class of ABCG2/Abcg2 inhibitors. Our results may have important implications for the use of cannabinoid compounds with therapeutic drugs that are substrates for ABCG2.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2190019/

Role of the endogenous cannabinoid system in nicotine addiction: novel insights.

“Several lines of evidence have shown that the endogenous cannabinoids are implicated in several neuropsychiatric diseases. Notably, preclinical and human clinical studies have shown a pivotal role of the cannabinoid system in nicotine addiction.

The CB1 receptor inverse agonist/antagonist rimonabant (also known as SR141716) was effective to decrease nicotine-taking and nicotine-seeking in rodents, as well as the elevation of dopamine induced by nicotine in brain reward area. Rimonabant has been shown to improve the ability of smokers to quit smoking in randomized clinical trials. However, rimonabant was removed from the market due to increased risk of psychiatric side-effects observed in humans.

Recently, other components of the endogenous cannabinoid system have been explored. Here, we present the recent advances on the understanding of the role of the different components of the cannabinoid system on nicotine’s effects.

Those recent findings suggest possible alternative ways of modulating the cannabinoid system that could have implication for nicotine dependence treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/25859226

http://www.thctotalhealthcare.com/category/addiction/

A sativex-like combination of phytocannabinoids as a disease-modifying therapy in a viral model of multiple sclerosis.

“Sativex® is an oromucosal spray, containing equivalent amounts of Δ9 -tetrahydrocannabinol (Δ9 -THC) and cannabidiol (CBD)-botanical drug substance (BDS), and which has been approved for the treatment of spasticity and pain associated to multiple sclerosis (MS).

In this study, we investigated whether Sativex® may also serve as a disease-modifying agent in the Theiler’s murine encephalomyelitis virus induced demyelinating disease model of MS…

The data support the therapeutic potential of Sativex® to slow MS progression and its relevance in CNS repair.”

http://www.ncbi.nlm.nih.gov/pubmed/25857324

http://www.thctotalhealthcare.com/category/multiple-sclerosis-ms/