Cannabidiol protects against doxorubicin-induced cardiomyopathy by modulating mitochondrial function and biogenesis.

“Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX’s cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells, and cell death.

Cannabidiol is a non-psychotropic constituent of marijuana, which is well-tolerated in humans, with antioxidant, anti-inflammatory, and recently discovered antitumor properties.

We aimed to explore the effects of cannabidiol in a well-established mouse model of DOX-induced cardiomyopathy…

Treatment with cannabidiol markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. Cannabidiol also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis.

These data suggest that cannabidiol may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury.”

http://www.ncbi.nlm.nih.gov/pubmed/25569804

Proapoptotic effect of endocannabinoids in prostate cancer cells.

“Recent evidence shows that derivatives of Cannabis sativa and its analogs may exert a protective effect against different types of oncologic pathologies.

The purpose of the present study was to detect the presence of cannabinoid receptors (CB1 and CB2) on cancer cells with a prostatic origin and to evaluate the effect of the in vitro use of synthetic analogs…

Based on these results, we suggest that endocannabinoids may be a beneficial option for the treatment of prostate cancer that has become nonresponsive to common therapies.”

http://www.ncbi.nlm.nih.gov/pubmed/25606819

http://www.thctotalhealthcare.com/category/prostate-cancer/

Cannabidiol increases survival and promotes rescue of cognitive function in a murine model of Cerebral Malaria.

Neuroscience

“Cerebral malaria (CM) is a severe complication resulting from Plasmodium falciparuminfection that might cause permanent neurological deficits.

Cannabidiol (CBD) is a nonpsychotomimetic compound of Cannabis sativa with neuroprotective properties.

In the present work, we evaluated the effects of CBD in a murine model of CM.

CBD treatment resulted in an increase in BDNF expression in the hippocampus and decreased levels of proinflammatory cytokines in the hippocampus (TNF-α) and prefrontal cortex (IL-6).

Our results indicate that CBD exhibits neuroprotective effects in CM model and might be useful as an adjunctive therapy to prevent neurological symptoms following this disease.”

http://www.ncbi.nlm.nih.gov/pubmed/25595981

“Cannabidiol adjuvant treatment increases survival in the murine model of CM. Cannabidiol adjuvant treatment promotes rescue of behavioral and cognitive function.”

https://www.sciencedirect.com/science/article/pii/S0306452215000196

http://www.thctotalhealthcare.com/category/malaria/

Cannabinoid CB1 receptors in the dorsal hippocampus and prelimbic medial prefrontal cortex modulate anxiety-like behavior in rats: additional evidence.

“Endocannabinoids (ECBs) such as anandamide (AEA) act by activating cannabinoid type 1 (CB1) or 2 (CB2) receptors. The anxiolytic effect of drugs that facilitate ECB effects is associated with increase in AEA levels in several encephalic areas, including the prefrontal cortex (PFC).

Activation of CB1 receptors by CB1 agonists injected directly into these areas is usually anxiolytic.

However, depending on the encephalic region being investigated and on the stressful experiences, opposite effects were observed, as reported in the ventral HIP. In addition, contradictory results have been reported after CB1 activation in the dorsal HIP (dHIP).

Therefore, in the present paper we have attempted to verify if directly interfering with ECB metabolism/reuptake in the prelimbic (PL) portion of the medial PFC (MPFC) and dHIP would produce different effects in two conceptually distinct animal models: the elevated plus maze (EPM) and the Vogel conflict test (VCT).

We observed drugs which interfere with ECB reuptake/metabolism in both the PL and in the dentate gyrus of the dHIP induced anxiolytic-like effect, in both the EPM and in the VCT via CB1 receptors, suggesting CB1 signaling in these brain regions modulate defensive responses to both innate and learned threatening stimuli.

This data further strengthens previous results indicating modulation of hippocampal and MPFC activity via CB1 by ECBs, which could be therapeutically targeted to treat anxiety disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/25595265

http://www.thctotalhealthcare.com/category/anxiety-2/

Two non-psychoactive cannabinoids reduce intra-cellular lipid levels and inhibit hepatosteatosis.

“Obesity and associated metabolic syndrome have quickly become a pandemic and a major detriment to human health globally.

The presence of non-alcoholic fatty liver disease (NAFLD; hepatosteatosis) in obesity has been linked to the worsening of the metabolic syndrome, including the development of insulin resistance and cardiovascular disease. Currently, there are few options to treat NAFLD, including life style changes and insulin sensitizers.

Recent evidence suggests that the cannabinoids Δ9-tetrahydrocannabivarin (THCV) and cannabidiol (CBD) improve insulin sensitivity; we aimed at studying their effects on lipid levels…

THCV and CBD directly reduce accumulated lipid levels in vitro in a hepatosteatosis model and adipocytes.

…these cannabinoids are able to increase yolk lipid mobilization and inhibit the development of hepatosteatosis respectively.

CONCLUSIONS:

Our results suggest that THCV and CBD might be used as new therapeutic agents for the pharmacological treatment of obesity- and metabolic syndrome-related NAFLD/hepatosteatosis.”

http://www.ncbi.nlm.nih.gov/pubmed/25595882

http://www.thctotalhealthcare.com/category/obesity-2/

Experience of adjunctive cannabis use for chronic non-cancer pain: Findings from the Pain and Opioids IN Treatment (POINT) study.

“There is increasing debate about cannabis use for medical purposes, including for symptomatic treatment of chronic pain. We investigated patterns and correlates of cannabis use in a large community sample of people who had been prescribed opioids for chronic non-cancer pain.

CONCLUSIONS:

Cannabis use for pain relief purposes appears common among people living with chronic non-cancer pain, and users report greater pain relief in combination with opioids than when opioids are used alone.”

http://www.ncbi.nlm.nih.gov/pubmed/25533893

http://www.thctotalhealthcare.com/category/pain-2/

Neuroprotection in Experimental Autoimmune Encephalomyelitis and Progressive Multiple Sclerosis by Cannabis-Based Cannabinoids.

“Multiple sclerosis (MS) is the major immune-mediated, demyelinating, neurodegenerative disease of the central nervous system.

Compounds within cannabis, notably Δ9-tetrahydrocannabinol (Δ9-THC) can limit the inappropriate neurotransmissions that cause MS-related problems and medicinal cannabis is now licenced for the treatment of MS symptoms.

However, the biology indicates that the endocannabinoid system may offer the potential to control other aspects of disease.

… we and others can experimentally demonstrate that they may limit neurodegeneration that drives progressive disability.

Here we show that synthetic cannabidiol can slow down the accumulation of disability from the inflammatory penumbra during relapsing experimental autoimmune encephalomyelitis (EAE) in ABH mice, possibly via blockade of voltage-gated sodium channels.

In addition, whilst non-sedating doses of Δ9-THC do not inhibit relapsing autoimmunity, they dose-dependently inhibit the accumulation of disability during EAE. They also appear to slow down clinical progression during MS in humans…

… demonstrated a significant slowing of progression by oral Δ9-THC compared to placebo.

Whilst this may support the experimental and biological evidence for a neuroprotective effect by the endocannabinoid system in MS, it remains to be established whether this will be formally demonstrated in further trials of Δ9-THC/cannabis in progressive MS.”

http://www.ncbi.nlm.nih.gov/pubmed/25537576

http://www.thctotalhealthcare.com/category/experimental-autoimmune-encephalomyelitis/

http://www.thctotalhealthcare.com/category/multiple-sclerosis-ms/

[Potential applications of marijuana and cannabinoids in medicine]

“Cannabinoids, psychoactive substances present in cannabis, have been known to mankind for hundreds of years.

Apart from 9-tetrahydrocannabinol (THC) substances found in the cannabis herb with the highest toxicological value are cannabidiol (CBD) and cannabinol (CBN).

The discovery of CB1 and CB2 receptors, located in various tissues (ranging from the brain to peripheral tissues), has defined the potential objective of these new chemical substances’ effects.

Many studies on the application of cannabinoids in the treatment of various diseases such as diabetes, neoplasms, inflammatory diseases, neurological conditions, pain and vomitting were conducted.

Drugs containing e.g. THC appear on the pharmaceutical market.

Substances affecting cannabinoid receptors may show beneficial effects…”

http://www.ncbi.nlm.nih.gov/pubmed/25518584

 

 

Drug discovery strategies that focus on the endocannabinoid signaling system in psychiatric disease.

“The endocannabinoid (eCB) system plays an important role in the control of mood, and its dysregulation has been implicated in several psychiatric disorders.

Targeting the eCB system appears to represent an attractive and novel approach to the treatment of depression and other mood disorders.

…the review provides discussion on compounds and drugs that target this system and might prove to be successful for the treatment of mood-related psychiatric disorders.

The discovery of increasingly selective modulators of CB receptors should enable the identification of optimal therapeutic strategies.

It should also maximize the likelihood of developing safe and effective treatments for debilitating psychiatric disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/25488672

Cannabinoids and muscular pain. Effectiveness of the local administration in rat.

“Pain associated with musculoskeletal disorders can be difficult to control and the incorporation of new approaches for its treatment is an interesting challenge.

Activation of cannabinoid (CB) receptors decreases nociceptive transmission in acute, inflammatory and neuropathic pain states…

Our results provide evidence that both, CB 1 and CB 2 receptors can contribute to muscular antinociception and, interestingly, suggest that the local administration of CB agonists could be a new and useful pharmacological strategy in the treatment of muscular pain, avoiding adverse effects induced by systemic administration.”

http://www.ncbi.nlm.nih.gov/pubmed/22354705

http://www.thctotalhealthcare.com/category/pain-2/