Involvement of central and peripheral cannabinoid receptors on antinociceptive effect of tetrahydrocannabinol in muscle pain.

“Cannabinoid (CB) receptors have emerged as an attractive therapeutic target for pain management in recent years and the interest in the use of cannabinoids is gradually increasing, particularly in patients where conventional treatments fail…

This study suggests that THC could be a future pharmacological option in the treatment of muscle pain.

The local administration of THC could be an interesting option to treat this type of pain avoiding the central adverse effects.”

http://www.ncbi.nlm.nih.gov/pubmed/25446925

http://www.thctotalhealthcare.com/category/pain-2/

Cannabinoids: New Promising Agents in the Treatment of Neurological Diseases.

“Nowadays, Cannabis sativa is considered the most extensively used narcotic. Nevertheless, this fame obscures its traditional employ in native medicine of South Africa, South America, Turkey, Egypt and in many regions of Asia as a therapeutic drug.

In fact, the use of compounds containing Cannabis and their introduction in clinical practice is still controversial and strongly limited by unavoidable psychotropic effects. So, overcoming these adverse effects represents the main open question on the utilization of cannabinoids as new drugs for treatment of several pathologies.

To date, therapeutic use of cannabinoid extracts is prescribed in patients with glaucoma, in the control of chemotherapy-related vomiting and nausea, for appetite stimulation in patients with anorexia-cachexia syndrome by HIV, and for the treatment of multiple sclerosis symptoms.

Recently, researcher efforts are aimed to employ the therapeutic potentials of Cannabis sativa in the modulation of cannabinoid receptor activity within the central nervous system, particularly for the treatment of neurodegenerative diseases, as well as psychiatric and non-psychiatric disorders.

This review evaluates the most recent available data on cannabinoids utilization in experimental and clinical studies, and highlights their beneficial effects in the prevention of the main neurological diseases and for the clinical treatment of symptoms with them correlated.”

http://www.ncbi.nlm.nih.gov/pubmed/25407719

Cannabinoids in the treatment of pain

“Cannabinoids and the endo-cannabinoid system play an important role in the sensation of pain. As conventional analgesics are often associated with serious side-effects, cannabinoids and agonists of their receptors offer a useful alternative or coanalgesic in the treatment of pain. The aim of this work is to summarize the role of cannabinoids and their receptors in nociception and pain treatment.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2991928/

Cannabinoids seem to be effective against neuropathic pain, inflammatory pain, post-operative pain and cancer pain. Their use as analgesics or coanalgesics may offer a useful alterative option for pain management in clinical practice.” http://www.annals-general-psychiatry.com/content/9/S1/S232/abstract

http://www.thctotalhealthcare.com/category/pain-2/

The Combination of Cannabidiol and Δ9-Tetrahydrocannabinol Enhances the Anticancer Effects of Radiation in an Orthotopic Murine Glioma Model.

“High-grade glioma is one of the most aggressive cancers in adult humans and long-term survival rates are very low as standard treatments for glioma remain largely unsuccessful.

Cannabinoids have been shown to specifically inhibit glioma growth as well as neutralize oncogenic processes such as angiogenesis.

In an attempt to improve treatment outcome, we have investigated the effect of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) both alone and in combination with radiotherapy in a number of glioma cell lines (T98G, U87MG, and GL261).

Cannabinoids were used in two forms, pure (P) and as a botanical drug substance (BDS).

Results demonstrated a duration- and dose-dependent reduction in cell viability with each cannabinoid and suggested that THC-BDS was more efficacious than THC-P, whereas, conversely, CBD-P was more efficacious than CBD-BDS.

…increase in radiosensitivity was associated with an increase in markers of autophagy and apoptosis.

These in vitro results were recapitulated in an orthotopic murine model for glioma, which showed dramatic reductions in tumor volumes when both cannabinoids were used with irradiation.

Taken together, our data highlight the possibility that these cannabinoids can prime glioma cells to respond better to ionizing radiation, and suggest a potential clinical benefit for glioma patients by using these two treatment modalities.”

http://www.ncbi.nlm.nih.gov/pubmed/25398831

http://www.thctotalhealthcare.com/category/gllomas/

Anti-aversive role of the endocannabinoid system in the periaqueductal gray stimulation model of panic attacks in rats.

“Direct activation of the cannabinoid CB1 receptor in the dorsolateral periaqueductal gray (dlPAG) inhibits anxiety- and panic-related behaviours in experimental animals. It has remained unclear, however, whether the local endocannabinoid signalling is recruited as a protective mechanism against aversive stimuli.

The present study tested the hypothesis that the endocannabinoid system counteracts aversive responses in the dlPAG-stimulation model of panic attacks…

The endocannabinoid system in the dlPAG attenuates the behavioural, cellular and cardiovascular consequences of aversive stimuli. This process may be considered for the development of additional treatments against panic and other anxiety-related disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/25388290

http://www.thctotalhealthcare.com/category/panic-attack/

Transdermal Delivery of Cannabidiol Attenuates Binge Alcohol-Induced Neurodegeneration in a Rodent Model of an Alcohol Use Disorder

“Excessive alcohol consumption, characteristic of alcohol use disorders, results in neurodegeneration… the current study aimed to advance the preclinical development of transdermal delivery of cannabidiol (CBD) for the treatment of alcohol-induced neurodegeneration…

CBD is a main constituent of cannabis sativa… CBD is very well tolerated in humans. CBD has a plethora of actions, including anticonvulsive, anxiolytic, anti-relapse and neuroprotective properties, which make it an ideal candidate for treating multiple pathologies associated with alcohol use disorders…

These results demonstrate the feasibility of using CBD transdermal delivery systems for the treatment of alcohol-induced neurodegeneration.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096899/

Targeting the endocannabinoid system to treat haunting traumatic memories

“One of the core symptoms in post-traumatic stress disorder (PTSD) is the traumatic memory that constantly haunts the patient.

An increasing body of evidence points to the endocannabinoid (eCB) system as a key system in the regulation of emotionality and memory.

Hence, eCB enhancers may be the ideal pharmacological treatment for PTSD…

…eCBs have an essential role in maintaining emotional homeostasis and in modulating memory consolidation, retrieval and extinction.

Hence, the authors concluded that eCBs could be an ideal drug to treat PTSD by addressing both the emotional and cognitive aspects of the disorder.

Indeed, accumulating data from both clinical and pre-clinical studies suggest that targeting the eCB system may benefit PTSD.

Several studies support the self-medication hypothesis explanation for cannabis use to cope with PTSD symptoms.

To conclude, the eCB system may be a useful target for treating both the cognitive and emotional features of PTSD…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776936/

http://www.thctotalhealthcare.com/category/post-traumatic-stress-disorder-ptsd/

Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury.

Image result for immunopharmacology and immunotoxicology

“We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI).

In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation.

The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant.

Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI.

Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/25356537

Cannabinoid Type 1 and Type 2 Receptor Antagonists Prevent Attenuation of Serotonin-Induced Reflex Apneas by Dronabinol in Sprague-Dawley Rats.

“The prevalence of obstructive sleep apnea (OSA) in Americans is 9% and increasing…

Vagal afferent neurons are inhibited by cannabinoid type 1 (CB1) or cannabinoid type 2 (CB2) receptors in animal models of vagally-mediated behaviors…

These findings underscore the therapeutic potential of dronabinol (THC) in the treatment of OSA and implicate participation of both cannabinoid receptors in dronabinol’s apnea suppression effect.”

http://www.ncbi.nlm.nih.gov/pubmed/25350456

http://www.thctotalhealthcare.com/category/sleep-apnea/

[There is evidence for the use of cannabinoids for symptomatic treatment of multiple sclerosis.]

“We identified 16 randomized placebo-controlled trials investigating cannabinoids as symptomatic treatment in multiple sclerosis (MS).

There is evidence that nabiximols (THC/CBD) oromucosal spray may reduce subjective symptoms of spasticity and that dronabinol (THC) is effective against neuropathic pain in patients with MS…”

http://www.ncbi.nlm.nih.gov/pubmed/25350886

http://www.thctotalhealthcare.com/category/multiple-sclerosis-ms/